Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Virenque
1
65 kgRiis
2
71 kgDufaux
3
60 kgBrochard
4
68 kgRominger
6
65 kgUllrich
7
73 kgHervé
8
62 kgLuttenberger
9
60 kgUgrumov
10
58 kgBölts
11
73 kgInduráin
12
76 kgBartoli
13
65 kgStephens
14
65 kgBerzin
15
64 kgEscartín
16
61 kgSavoldelli
18
72 kgZülle
20
72 kgGualdi
21
68 kgOlano
22
70 kgBreukink
23
70 kgMadouas
24
70 kgSørensen
25
70 kg
1
65 kgRiis
2
71 kgDufaux
3
60 kgBrochard
4
68 kgRominger
6
65 kgUllrich
7
73 kgHervé
8
62 kgLuttenberger
9
60 kgUgrumov
10
58 kgBölts
11
73 kgInduráin
12
76 kgBartoli
13
65 kgStephens
14
65 kgBerzin
15
64 kgEscartín
16
61 kgSavoldelli
18
72 kgZülle
20
72 kgGualdi
21
68 kgOlano
22
70 kgBreukink
23
70 kgMadouas
24
70 kgSørensen
25
70 kg
Weight (KG) →
Result →
76
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VIRENQUE Richard | 65 |
2 | RIIS Bjarne | 71 |
3 | DUFAUX Laurent | 60 |
4 | BROCHARD Laurent | 68 |
6 | ROMINGER Tony | 65 |
7 | ULLRICH Jan | 73 |
8 | HERVÉ Pascal | 62 |
9 | LUTTENBERGER Peter | 60 |
10 | UGRUMOV Piotr | 58 |
11 | BÖLTS Udo | 73 |
12 | INDURÁIN Miguel | 76 |
13 | BARTOLI Michele | 65 |
14 | STEPHENS Neil | 65 |
15 | BERZIN Evgeni | 64 |
16 | ESCARTÍN Fernando | 61 |
18 | SAVOLDELLI Paolo | 72 |
20 | ZÜLLE Alex | 72 |
21 | GUALDI Mirko | 68 |
22 | OLANO Abraham | 70 |
23 | BREUKINK Erik | 70 |
24 | MADOUAS Laurent | 70 |
25 | SØRENSEN Rolf | 70 |