Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Zabel
1
69 kgMoncassin
2
73 kgBaldato
3
60 kgAbduzhaparov
4
72 kgBlijlevens
5
70 kgTchmil
6
75 kgRiis
7
71 kgVirenque
9
65 kgPiccoli
10
64 kgSørensen
11
70 kgDufaux
12
60 kgRominger
14
65 kgOlano
15
70 kgBrochard
16
68 kgHamburger
17
58 kgUllrich
18
73 kgInduráin
19
76 kgSimon
20
70 kgGualdi
21
68 kgSkibby
24
70 kgLuttenberger
26
60 kgBartoli
27
65 kg
1
69 kgMoncassin
2
73 kgBaldato
3
60 kgAbduzhaparov
4
72 kgBlijlevens
5
70 kgTchmil
6
75 kgRiis
7
71 kgVirenque
9
65 kgPiccoli
10
64 kgSørensen
11
70 kgDufaux
12
60 kgRominger
14
65 kgOlano
15
70 kgBrochard
16
68 kgHamburger
17
58 kgUllrich
18
73 kgInduráin
19
76 kgSimon
20
70 kgGualdi
21
68 kgSkibby
24
70 kgLuttenberger
26
60 kgBartoli
27
65 kg
Weight (KG) →
Result →
76
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | MONCASSIN Frédéric | 73 |
3 | BALDATO Fabio | 60 |
4 | ABDUZHAPAROV Djamolidine | 72 |
5 | BLIJLEVENS Jeroen | 70 |
6 | TCHMIL Andrei | 75 |
7 | RIIS Bjarne | 71 |
9 | VIRENQUE Richard | 65 |
10 | PICCOLI Mariano | 64 |
11 | SØRENSEN Rolf | 70 |
12 | DUFAUX Laurent | 60 |
14 | ROMINGER Tony | 65 |
15 | OLANO Abraham | 70 |
16 | BROCHARD Laurent | 68 |
17 | HAMBURGER Bo | 58 |
18 | ULLRICH Jan | 73 |
19 | INDURÁIN Miguel | 76 |
20 | SIMON François | 70 |
21 | GUALDI Mirko | 68 |
24 | SKIBBY Jesper | 70 |
26 | LUTTENBERGER Peter | 60 |
27 | BARTOLI Michele | 65 |