Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Basso
1
70 kgVogondy
2
62 kgBrandt
3
66 kgChavanel
4
73 kgNozal
5
70 kgZubeldia
6
68 kgGustov
7
64 kgTrampusch
8
60 kgMillar
9
79 kgCasar
10
63 kgPineau
11
65 kgMayo
12
65 kgMenchov
13
65 kgEngels
14
64 kgHunter
15
72 kgEdaleine
16
62 kgFlickinger
17
78 kgHushovd
18
83 kgZaballa
19
66 kgCooke
20
75 kgBertogliati
21
73 kgCortinovis
22
68 kg
1
70 kgVogondy
2
62 kgBrandt
3
66 kgChavanel
4
73 kgNozal
5
70 kgZubeldia
6
68 kgGustov
7
64 kgTrampusch
8
60 kgMillar
9
79 kgCasar
10
63 kgPineau
11
65 kgMayo
12
65 kgMenchov
13
65 kgEngels
14
64 kgHunter
15
72 kgEdaleine
16
62 kgFlickinger
17
78 kgHushovd
18
83 kgZaballa
19
66 kgCooke
20
75 kgBertogliati
21
73 kgCortinovis
22
68 kg
Weight (KG) →
Result →
83
60
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | BASSO Ivan | 70 |
2 | VOGONDY Nicolas | 62 |
3 | BRANDT Christophe | 66 |
4 | CHAVANEL Sylvain | 73 |
5 | NOZAL Isidro | 70 |
6 | ZUBELDIA Haimar | 68 |
7 | GUSTOV Volodymyr | 64 |
8 | TRAMPUSCH Gerhard | 60 |
9 | MILLAR David | 79 |
10 | CASAR Sandy | 63 |
11 | PINEAU Jérôme | 65 |
12 | MAYO Iban | 65 |
13 | MENCHOV Denis | 65 |
14 | ENGELS Addy | 64 |
15 | HUNTER Robert | 72 |
16 | EDALEINE Christophe | 62 |
17 | FLICKINGER Andy | 78 |
18 | HUSHOVD Thor | 83 |
19 | ZABALLA Constantino | 66 |
20 | COOKE Baden | 75 |
21 | BERTOGLIATI Rubens | 73 |
22 | CORTINOVIS Alessandro | 68 |