Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Cunego
1
58 kgFothen
2
71 kgSprick
3
71 kgde la Fuente
4
67 kgDueñas
5
61 kgLöfkvist
6
70 kgVentoso
7
75 kgPosthuma
8
76 kgVaugrenard
9
72 kgWeening
10
68 kgRiccò
11
57 kgKnees
12
81 kgEisel
13
74 kgGilbert
14
75 kgVansummeren
15
79 kgGonzalo
16
66 kgMugerli
17
68 kgPozzato
18
73 kgHernández
19
64 kg
1
58 kgFothen
2
71 kgSprick
3
71 kgde la Fuente
4
67 kgDueñas
5
61 kgLöfkvist
6
70 kgVentoso
7
75 kgPosthuma
8
76 kgVaugrenard
9
72 kgWeening
10
68 kgRiccò
11
57 kgKnees
12
81 kgEisel
13
74 kgGilbert
14
75 kgVansummeren
15
79 kgGonzalo
16
66 kgMugerli
17
68 kgPozzato
18
73 kgHernández
19
64 kg
Weight (KG) →
Result →
81
57
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | CUNEGO Damiano | 58 |
2 | FOTHEN Markus | 71 |
3 | SPRICK Matthieu | 71 |
4 | DE LA FUENTE David | 67 |
5 | DUEÑAS Moisés | 61 |
6 | LÖFKVIST Thomas | 70 |
7 | VENTOSO Francisco José | 75 |
8 | POSTHUMA Joost | 76 |
9 | VAUGRENARD Benoît | 72 |
10 | WEENING Pieter | 68 |
11 | RICCÒ Riccardo | 57 |
12 | KNEES Christian | 81 |
13 | EISEL Bernhard | 74 |
14 | GILBERT Philippe | 75 |
15 | VANSUMMEREN Johan | 79 |
16 | GONZALO Eduardo | 66 |
17 | MUGERLI Matej | 68 |
18 | POZZATO Filippo | 73 |
19 | HERNÁNDEZ Aitor | 64 |