Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 37
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Contador
1
61 kgSoler
2
70 kgTxurruka
3
58 kgKohl
4
61 kgSiutsou
5
68 kgDekker
6
69 kgGerdemann
7
71 kgGusev
8
67 kgLöfkvist
9
70 kgGrivko
10
70 kgAzanza
11
68 kgVaugrenard
12
72 kgTschopp
13
62 kgBonnet
14
80 kgLadagnous
15
73 kgDelage
16
70 kgSieberg
17
80 kgCorioni
18
67 kgBurghardt
19
75 kgHaussler
20
74 kgKrauß
21
81 kgThomas
22
71 kg
1
61 kgSoler
2
70 kgTxurruka
3
58 kgKohl
4
61 kgSiutsou
5
68 kgDekker
6
69 kgGerdemann
7
71 kgGusev
8
67 kgLöfkvist
9
70 kgGrivko
10
70 kgAzanza
11
68 kgVaugrenard
12
72 kgTschopp
13
62 kgBonnet
14
80 kgLadagnous
15
73 kgDelage
16
70 kgSieberg
17
80 kgCorioni
18
67 kgBurghardt
19
75 kgHaussler
20
74 kgKrauß
21
81 kgThomas
22
71 kg
Weight (KG) →
Result →
81
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | CONTADOR Alberto | 61 |
2 | SOLER Juan Mauricio | 70 |
3 | TXURRUKA Amets | 58 |
4 | KOHL Bernhard | 61 |
5 | SIUTSOU Kanstantsin | 68 |
6 | DEKKER Thomas | 69 |
7 | GERDEMANN Linus | 71 |
8 | GUSEV Vladimir | 67 |
9 | LÖFKVIST Thomas | 70 |
10 | GRIVKO Andrey | 70 |
11 | AZANZA Jorge | 68 |
12 | VAUGRENARD Benoît | 72 |
13 | TSCHOPP Johann | 62 |
14 | BONNET William | 80 |
15 | LADAGNOUS Matthieu | 73 |
16 | DELAGE Mickaël | 70 |
17 | SIEBERG Marcel | 80 |
18 | CORIONI Claudio | 67 |
19 | BURGHARDT Marcus | 75 |
20 | HAUSSLER Heinrich | 74 |
21 | KRAUß Sven | 81 |
22 | THOMAS Geraint | 71 |