Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van Garderen
1
72 kgPinot
2
63 kgKruijswijk
3
63 kgTaaramäe
4
73 kgIzagirre
5
66 kgValls
6
64 kgSagan
7
78 kgNerz
8
67 kgBoasson Hagen
9
75 kgMalacarne
10
63 kgGautier
11
65 kgZingle
12
67 kgVichot
13
74 kgOss
14
75 kgBoeckmans
15
76 kgRoux
16
73 kgEdet
17
60 kgGretsch
18
69 kgGhyselinck
19
74 kg
1
72 kgPinot
2
63 kgKruijswijk
3
63 kgTaaramäe
4
73 kgIzagirre
5
66 kgValls
6
64 kgSagan
7
78 kgNerz
8
67 kgBoasson Hagen
9
75 kgMalacarne
10
63 kgGautier
11
65 kgZingle
12
67 kgVichot
13
74 kgOss
14
75 kgBoeckmans
15
76 kgRoux
16
73 kgEdet
17
60 kgGretsch
18
69 kgGhyselinck
19
74 kg
Weight (KG) →
Result →
78
60
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GARDEREN Tejay | 72 |
2 | PINOT Thibaut | 63 |
3 | KRUIJSWIJK Steven | 63 |
4 | TAARAMÄE Rein | 73 |
5 | IZAGIRRE Gorka | 66 |
6 | VALLS Rafael | 64 |
7 | SAGAN Peter | 78 |
8 | NERZ Dominik | 67 |
9 | BOASSON HAGEN Edvald | 75 |
10 | MALACARNE Davide | 63 |
11 | GAUTIER Cyril | 65 |
12 | ZINGLE Romain | 67 |
13 | VICHOT Arthur | 74 |
14 | OSS Daniel | 75 |
15 | BOECKMANS Kris | 76 |
16 | ROUX Anthony | 73 |
17 | EDET Nicolas | 60 |
18 | GRETSCH Patrick | 69 |
19 | GHYSELINCK Jan | 74 |