Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Pinot
1
63 kgBardet
2
65 kgKwiatkowski
3
68 kgDumoulin
4
69 kgIzagirre
5
60 kgMajka
6
62 kgMolard
7
62 kgKing
8
68 kgSlagter
9
57 kgSagan
10
78 kgHerrada
11
70 kgDelaplace
12
65 kgReichenbach
13
64 kgOliveira
14
67 kgTrentin
15
74 kgCoquard
16
59 kgDurbridge
17
78 kgDegenkolb
18
82 kgFonseca
19
56 kgJarrier
20
69 kgPetit
21
80 kgDémare
22
76 kgViviani
23
67 kgCimolai
24
70 kg
1
63 kgBardet
2
65 kgKwiatkowski
3
68 kgDumoulin
4
69 kgIzagirre
5
60 kgMajka
6
62 kgMolard
7
62 kgKing
8
68 kgSlagter
9
57 kgSagan
10
78 kgHerrada
11
70 kgDelaplace
12
65 kgReichenbach
13
64 kgOliveira
14
67 kgTrentin
15
74 kgCoquard
16
59 kgDurbridge
17
78 kgDegenkolb
18
82 kgFonseca
19
56 kgJarrier
20
69 kgPetit
21
80 kgDémare
22
76 kgViviani
23
67 kgCimolai
24
70 kg
Weight (KG) →
Result →
82
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | PINOT Thibaut | 63 |
2 | BARDET Romain | 65 |
3 | KWIATKOWSKI Michał | 68 |
4 | DUMOULIN Tom | 69 |
5 | IZAGIRRE Ion | 60 |
6 | MAJKA Rafał | 62 |
7 | MOLARD Rudy | 62 |
8 | KING Ben | 68 |
9 | SLAGTER Tom-Jelte | 57 |
10 | SAGAN Peter | 78 |
11 | HERRADA Jesús | 70 |
12 | DELAPLACE Anthony | 65 |
13 | REICHENBACH Sébastien | 64 |
14 | OLIVEIRA Nelson | 67 |
15 | TRENTIN Matteo | 74 |
16 | COQUARD Bryan | 59 |
17 | DURBRIDGE Luke | 78 |
18 | DEGENKOLB John | 82 |
19 | FONSECA Armindo | 56 |
20 | JARRIER Benoît | 69 |
21 | PETIT Adrien | 80 |
22 | DÉMARE Arnaud | 76 |
23 | VIVIANI Elia | 67 |
24 | CIMOLAI Davide | 70 |