Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Pogačar
1
66 kgMas
2
61 kgMadouas
3
71 kgMartínez
4
63 kgKämna
5
65 kgTejada
6
63 kgEg
7
60 kgHirschi
8
61 kgPowless
9
67 kgSivakov
10
70 kgPedersen
11
71 kgBarthe
12
70 kgNieuwenhuis
13
71 kgSwift
14
75 kgCavagna
15
78 kgAsgreen
16
75 kgCosnefroy
17
65 kgPedersen
18
76 kgBurgaudeau
19
61 kgRusso
20
74 kgChevalier
21
60 kgBol
22
83 kg
1
66 kgMas
2
61 kgMadouas
3
71 kgMartínez
4
63 kgKämna
5
65 kgTejada
6
63 kgEg
7
60 kgHirschi
8
61 kgPowless
9
67 kgSivakov
10
70 kgPedersen
11
71 kgBarthe
12
70 kgNieuwenhuis
13
71 kgSwift
14
75 kgCavagna
15
78 kgAsgreen
16
75 kgCosnefroy
17
65 kgPedersen
18
76 kgBurgaudeau
19
61 kgRusso
20
74 kgChevalier
21
60 kgBol
22
83 kg
Weight (KG) →
Result →
83
60
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | POGAČAR Tadej | 66 |
2 | MAS Enric | 61 |
3 | MADOUAS Valentin | 71 |
4 | MARTÍNEZ Daniel Felipe | 63 |
5 | KÄMNA Lennard | 65 |
6 | TEJADA Harold | 63 |
7 | EG Niklas | 60 |
8 | HIRSCHI Marc | 61 |
9 | POWLESS Neilson | 67 |
10 | SIVAKOV Pavel | 70 |
11 | PEDERSEN Casper | 71 |
12 | BARTHE Cyril | 70 |
13 | NIEUWENHUIS Joris | 71 |
14 | SWIFT Connor | 75 |
15 | CAVAGNA Rémi | 78 |
16 | ASGREEN Kasper | 75 |
17 | COSNEFROY Benoît | 65 |
18 | PEDERSEN Mads | 76 |
19 | BURGAUDEAU Mathieu | 61 |
20 | RUSSO Clément | 74 |
21 | CHEVALIER Maxime | 60 |
22 | BOL Cees | 83 |