Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.4 * weight - 133
This means that on average for every extra kilogram weight a rider loses 2.4 positions in the result.
Lindeman
1
69 kgBelgy
3
68 kgKwiatkowski
4
68 kgJules
8
64 kgReza
10
71 kgCardoso
11
56 kgGarcía
15
70 kgGiraud
18
71 kgLaborie
21
67 kgSchulting
27
70 kgBouhanni
28
65 kgMestre
41
65 kgPatanchon
63
69 kgPaillot
69
72 kgLangella
71
76 kgCaldeira
73
76 kgBartko
74
78 kgTortelier
79
63 kg
1
69 kgBelgy
3
68 kgKwiatkowski
4
68 kgJules
8
64 kgReza
10
71 kgCardoso
11
56 kgGarcía
15
70 kgGiraud
18
71 kgLaborie
21
67 kgSchulting
27
70 kgBouhanni
28
65 kgMestre
41
65 kgPatanchon
63
69 kgPaillot
69
72 kgLangella
71
76 kgCaldeira
73
76 kgBartko
74
78 kgTortelier
79
63 kg
Weight (KG) →
Result →
78
56
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | LINDEMAN Bert-Jan | 69 |
3 | BELGY Julien | 68 |
4 | KWIATKOWSKI Michał | 68 |
8 | JULES Justin | 64 |
10 | REZA Kévin | 71 |
11 | CARDOSO André | 56 |
15 | GARCÍA Egoitz | 70 |
18 | GIRAUD Benjamin | 71 |
21 | LABORIE Christophe | 67 |
27 | SCHULTING Peter | 70 |
28 | BOUHANNI Nacer | 65 |
41 | MESTRE Daniel | 65 |
63 | PATANCHON Fabien | 69 |
69 | PAILLOT Yoann | 72 |
71 | LANGELLA Anthony | 76 |
73 | CALDEIRA Samuel José | 76 |
74 | BARTKO Robert | 78 |
79 | TORTELIER Etienne | 63 |