Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 34
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Schmidt
2
63 kgPatanchon
3
69 kgSáez
4
70 kgClain
7
59 kgMegens
9
65 kgLindeman
10
69 kgCoquard
12
59 kgGarcía
13
68 kgKurek
14
80 kgBichot
17
67 kgAregger
20
70 kgMaldonado
22
57 kgJanse van Rensburg
29
74 kgLamoisson
38
69 kgBrown
41
75 kgGirdlestone
50
66 kgZubov
52
72 kgAriesen
55
70 kgGuerin
62
64 kgAberasturi
68
69 kgBrüngger
87
62 kgLangella
88
76 kgPerez
98
70 kg
2
63 kgPatanchon
3
69 kgSáez
4
70 kgClain
7
59 kgMegens
9
65 kgLindeman
10
69 kgCoquard
12
59 kgGarcía
13
68 kgKurek
14
80 kgBichot
17
67 kgAregger
20
70 kgMaldonado
22
57 kgJanse van Rensburg
29
74 kgLamoisson
38
69 kgBrown
41
75 kgGirdlestone
50
66 kgZubov
52
72 kgAriesen
55
70 kgGuerin
62
64 kgAberasturi
68
69 kgBrüngger
87
62 kgLangella
88
76 kgPerez
98
70 kg
Weight (KG) →
Result →
80
57
2
98
# | Rider | Weight (KG) |
---|---|---|
2 | SCHMIDT Fabien | 63 |
3 | PATANCHON Fabien | 69 |
4 | SÁEZ Adrián | 70 |
7 | CLAIN Médéric | 59 |
9 | MEGENS Brian | 65 |
10 | LINDEMAN Bert-Jan | 69 |
12 | COQUARD Bryan | 59 |
13 | GARCÍA Ricardo | 68 |
14 | KUREK Adrian | 80 |
17 | BICHOT Freddy | 67 |
20 | AREGGER Marcel | 70 |
22 | MALDONADO Anthony | 57 |
29 | JANSE VAN RENSBURG Reinardt | 74 |
38 | LAMOISSON Morgan | 69 |
41 | BROWN Arran | 75 |
50 | GIRDLESTONE Dylan | 66 |
52 | ZUBOV Matvey | 72 |
55 | ARIESEN Johim | 70 |
62 | GUERIN Alexis | 64 |
68 | ABERASTURI Jon | 69 |
87 | BRÜNGGER Nico | 62 |
88 | LANGELLA Anthony | 76 |
98 | PEREZ Anthony | 70 |