Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Kurek
1
80 kgAriesen
2
70 kgCoquard
3
59 kgBrown
5
75 kgAberasturi
6
69 kgAregger
7
70 kgSchmidt
9
63 kgMaldonado
12
57 kgClain
16
59 kgPatanchon
23
69 kgBichot
28
67 kgGarcía
34
68 kgSáez
36
70 kgMegens
41
65 kgGirdlestone
45
66 kgLamoisson
46
69 kgZubov
48
72 kgLindeman
50
69 kgGuerin
52
64 kgLangella
79
76 kgBrüngger
85
62 kgJanse van Rensburg
104
74 kgPerez
108
70 kg
1
80 kgAriesen
2
70 kgCoquard
3
59 kgBrown
5
75 kgAberasturi
6
69 kgAregger
7
70 kgSchmidt
9
63 kgMaldonado
12
57 kgClain
16
59 kgPatanchon
23
69 kgBichot
28
67 kgGarcía
34
68 kgSáez
36
70 kgMegens
41
65 kgGirdlestone
45
66 kgLamoisson
46
69 kgZubov
48
72 kgLindeman
50
69 kgGuerin
52
64 kgLangella
79
76 kgBrüngger
85
62 kgJanse van Rensburg
104
74 kgPerez
108
70 kg
Weight (KG) →
Result →
80
57
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | KUREK Adrian | 80 |
2 | ARIESEN Johim | 70 |
3 | COQUARD Bryan | 59 |
5 | BROWN Arran | 75 |
6 | ABERASTURI Jon | 69 |
7 | AREGGER Marcel | 70 |
9 | SCHMIDT Fabien | 63 |
12 | MALDONADO Anthony | 57 |
16 | CLAIN Médéric | 59 |
23 | PATANCHON Fabien | 69 |
28 | BICHOT Freddy | 67 |
34 | GARCÍA Ricardo | 68 |
36 | SÁEZ Adrián | 70 |
41 | MEGENS Brian | 65 |
45 | GIRDLESTONE Dylan | 66 |
46 | LAMOISSON Morgan | 69 |
48 | ZUBOV Matvey | 72 |
50 | LINDEMAN Bert-Jan | 69 |
52 | GUERIN Alexis | 64 |
79 | LANGELLA Anthony | 76 |
85 | BRÜNGGER Nico | 62 |
104 | JANSE VAN RENSBURG Reinardt | 74 |
108 | PEREZ Anthony | 70 |