Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 173
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Szalontay
1
88 kgRäim
2
69 kgLovassy
6
71 kgTagliani
11
70 kgKorošec
18
75 kgFilutás
23
68 kgThill
26
73 kgRučigaj
31
68 kgPrevar
39
64 kgTurek
51
72 kgPiaskowy
53
60 kgSzeghalmi
60
66 kgvan Engelen
65
51 kgSpreafico
75
69 kgCraven
80
75 kgVan Aken
82
56 kgKovács
84
71 kgButler
89
61 kg
1
88 kgRäim
2
69 kgLovassy
6
71 kgTagliani
11
70 kgKorošec
18
75 kgFilutás
23
68 kgThill
26
73 kgRučigaj
31
68 kgPrevar
39
64 kgTurek
51
72 kgPiaskowy
53
60 kgSzeghalmi
60
66 kgvan Engelen
65
51 kgSpreafico
75
69 kgCraven
80
75 kgVan Aken
82
56 kgKovács
84
71 kgButler
89
61 kg
Weight (KG) →
Result →
88
51
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | SZALONTAY Sandor | 88 |
2 | RÄIM Mihkel | 69 |
6 | LOVASSY Krisztián | 71 |
11 | TAGLIANI Filippo | 70 |
18 | KOROŠEC Rok | 75 |
23 | FILUTÁS Viktor | 68 |
26 | THILL Tom | 73 |
31 | RUČIGAJ Žiga | 68 |
39 | PREVAR Oleksandr | 64 |
51 | TUREK Daniel | 72 |
53 | PIASKOWY Emanuel | 60 |
60 | SZEGHALMI Balint | 66 |
65 | VAN ENGELEN Adne | 51 |
75 | SPREAFICO Matteo | 69 |
80 | CRAVEN Dan | 75 |
82 | VAN AKEN Matthias | 56 |
84 | KOVÁCS Dávid | 71 |
89 | BUTLER Chris | 61 |