Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 83
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Räim
7
69 kgSpreafico
11
69 kgLovassy
13
71 kgFilutás
14
68 kgVan Aken
16
56 kgTurek
21
72 kgKorošec
25
75 kgCraven
31
75 kgKovács
41
71 kgvan Engelen
43
51 kgButler
45
61 kgRučigaj
47
68 kgTagliani
48
70 kgSzeghalmi
63
66 kgPiaskowy
64
60 kgThill
66
73 kgPrevar
83
64 kg
7
69 kgSpreafico
11
69 kgLovassy
13
71 kgFilutás
14
68 kgVan Aken
16
56 kgTurek
21
72 kgKorošec
25
75 kgCraven
31
75 kgKovács
41
71 kgvan Engelen
43
51 kgButler
45
61 kgRučigaj
47
68 kgTagliani
48
70 kgSzeghalmi
63
66 kgPiaskowy
64
60 kgThill
66
73 kgPrevar
83
64 kg
Weight (KG) →
Result →
75
51
7
83
# | Rider | Weight (KG) |
---|---|---|
7 | RÄIM Mihkel | 69 |
11 | SPREAFICO Matteo | 69 |
13 | LOVASSY Krisztián | 71 |
14 | FILUTÁS Viktor | 68 |
16 | VAN AKEN Matthias | 56 |
21 | TUREK Daniel | 72 |
25 | KOROŠEC Rok | 75 |
31 | CRAVEN Dan | 75 |
41 | KOVÁCS Dávid | 71 |
43 | VAN ENGELEN Adne | 51 |
45 | BUTLER Chris | 61 |
47 | RUČIGAJ Žiga | 68 |
48 | TAGLIANI Filippo | 70 |
63 | SZEGHALMI Balint | 66 |
64 | PIASKOWY Emanuel | 60 |
66 | THILL Tom | 73 |
83 | PREVAR Oleksandr | 64 |