Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 96
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Korošec
4
75 kgRäim
5
69 kgVan Aken
19
56 kgKovács
28
71 kgSpreafico
29
69 kgRučigaj
33
68 kgThill
34
73 kgButler
35
61 kgTagliani
36
70 kgFilutás
37
68 kgPiaskowy
43
60 kgCraven
46
75 kgTurek
47
72 kgLovassy
49
71 kgvan Engelen
63
51 kgSzeghalmi
67
66 kgPrevar
72
64 kg
4
75 kgRäim
5
69 kgVan Aken
19
56 kgKovács
28
71 kgSpreafico
29
69 kgRučigaj
33
68 kgThill
34
73 kgButler
35
61 kgTagliani
36
70 kgFilutás
37
68 kgPiaskowy
43
60 kgCraven
46
75 kgTurek
47
72 kgLovassy
49
71 kgvan Engelen
63
51 kgSzeghalmi
67
66 kgPrevar
72
64 kg
Weight (KG) →
Result →
75
51
4
72
# | Rider | Weight (KG) |
---|---|---|
4 | KOROŠEC Rok | 75 |
5 | RÄIM Mihkel | 69 |
19 | VAN AKEN Matthias | 56 |
28 | KOVÁCS Dávid | 71 |
29 | SPREAFICO Matteo | 69 |
33 | RUČIGAJ Žiga | 68 |
34 | THILL Tom | 73 |
35 | BUTLER Chris | 61 |
36 | TAGLIANI Filippo | 70 |
37 | FILUTÁS Viktor | 68 |
43 | PIASKOWY Emanuel | 60 |
46 | CRAVEN Dan | 75 |
47 | TUREK Daniel | 72 |
49 | LOVASSY Krisztián | 71 |
63 | VAN ENGELEN Adne | 51 |
67 | SZEGHALMI Balint | 66 |
72 | PREVAR Oleksandr | 64 |