Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Manninen
2
70 kgDonders
3
76 kgJaramillo
4
63 kgRučigaj
6
68 kgAlzate
7
74 kgLovassy
10
71 kgHucker
12
68 kgPogačar
14
66 kgFinkšt
15
70 kgPeák
16
74 kgDe Clercq
17
67 kgTybor
19
72 kgHarper
21
67 kgClarke
22
68 kgJoseph
23
71 kgGhebreigzabhier
26
68 kgRaileanu
27
63 kg
2
70 kgDonders
3
76 kgJaramillo
4
63 kgRučigaj
6
68 kgAlzate
7
74 kgLovassy
10
71 kgHucker
12
68 kgPogačar
14
66 kgFinkšt
15
70 kgPeák
16
74 kgDe Clercq
17
67 kgTybor
19
72 kgHarper
21
67 kgClarke
22
68 kgJoseph
23
71 kgGhebreigzabhier
26
68 kgRaileanu
27
63 kg
Weight (KG) →
Result →
76
63
2
27
# | Rider | Weight (KG) |
---|---|---|
2 | MANNINEN Matti | 70 |
3 | DONDERS Jelle | 76 |
4 | JARAMILLO Daniel | 63 |
6 | RUČIGAJ Žiga | 68 |
7 | ALZATE Carlos | 74 |
10 | LOVASSY Krisztián | 71 |
12 | HUCKER Robbie | 68 |
14 | POGAČAR Tadej | 66 |
15 | FINKŠT Tilen | 70 |
16 | PEÁK Barnabás | 74 |
17 | DE CLERCQ Angelo | 67 |
19 | TYBOR Patrik | 72 |
21 | HARPER Chris | 67 |
22 | CLARKE Jonathan | 68 |
23 | JOSEPH Thomas | 71 |
26 | GHEBREIGZABHIER Amanuel | 68 |
27 | RAILEANU Cristian | 63 |