Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Peák
1
74 kgPogačar
2
66 kgDlamini
3
66 kgJoseph
4
71 kgŠtibingr
6
62 kgRučigaj
7
68 kgGrošelj
9
70 kgPauwels
10
68 kgSipos
13
65 kgSiebens
14
62 kgKipkemboi
15
63 kgAreruya
16
74 kgFilutás
17
68 kgDriesen
19
71 kgSzarka
20
67 kgFinkšt
21
70 kgPápai
24
76 kgOtruba
27
75 kg
1
74 kgPogačar
2
66 kgDlamini
3
66 kgJoseph
4
71 kgŠtibingr
6
62 kgRučigaj
7
68 kgGrošelj
9
70 kgPauwels
10
68 kgSipos
13
65 kgSiebens
14
62 kgKipkemboi
15
63 kgAreruya
16
74 kgFilutás
17
68 kgDriesen
19
71 kgSzarka
20
67 kgFinkšt
21
70 kgPápai
24
76 kgOtruba
27
75 kg
Weight (KG) →
Result →
76
62
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | PEÁK Barnabás | 74 |
2 | POGAČAR Tadej | 66 |
3 | DLAMINI Nic | 66 |
4 | JOSEPH Thomas | 71 |
6 | ŠTIBINGR Matěj | 62 |
7 | RUČIGAJ Žiga | 68 |
9 | GROŠELJ Matic | 70 |
10 | PAUWELS Tijl | 68 |
13 | SIPOS Marek | 65 |
14 | SIEBENS Gianni | 62 |
15 | KIPKEMBOI Salim | 63 |
16 | ARERUYA Joseph | 74 |
17 | FILUTÁS Viktor | 68 |
19 | DRIESEN Jarne | 71 |
20 | SZARKA Gergely | 67 |
21 | FINKŠT Tilen | 70 |
24 | PÁPAI Ádám | 76 |
27 | OTRUBA Jakub | 75 |