Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Neilands
2
69 kgBelletti
3
72 kgOldani
4
65 kgValter
5
65 kgZahálka
6
73 kgHofstetter
7
66 kgFrapporti
8
69 kgRajović
9
74 kgLe Turnier
10
65 kgMarengo
11
69 kgDina
12
67 kgMaté
13
68 kgVisconti
16
63 kgMccormick
17
72.5 kgGavazzi
18
65 kgLovassy
19
71 kgDeruette
20
70 kgPaluta
21
65 kgBisolti
22
58 kgFetter
24
70 kgVelasco
26
59 kgMuñoz
28
57 kgSisr
29
72 kg
2
69 kgBelletti
3
72 kgOldani
4
65 kgValter
5
65 kgZahálka
6
73 kgHofstetter
7
66 kgFrapporti
8
69 kgRajović
9
74 kgLe Turnier
10
65 kgMarengo
11
69 kgDina
12
67 kgMaté
13
68 kgVisconti
16
63 kgMccormick
17
72.5 kgGavazzi
18
65 kgLovassy
19
71 kgDeruette
20
70 kgPaluta
21
65 kgBisolti
22
58 kgFetter
24
70 kgVelasco
26
59 kgMuñoz
28
57 kgSisr
29
72 kg
Weight (KG) →
Result →
74
57
2
29
# | Rider | Weight (KG) |
---|---|---|
2 | NEILANDS Krists | 69 |
3 | BELLETTI Manuel | 72 |
4 | OLDANI Stefano | 65 |
5 | VALTER Attila | 65 |
6 | ZAHÁLKA Matěj | 73 |
7 | HOFSTETTER Hugo | 66 |
8 | FRAPPORTI Marco | 69 |
9 | RAJOVIĆ Dušan | 74 |
10 | LE TURNIER Mathias | 65 |
11 | MARENGO Umberto | 69 |
12 | DINA Márton | 67 |
13 | MATÉ Luis Ángel | 68 |
16 | VISCONTI Giovanni | 63 |
17 | MCCORMICK Hayden | 72.5 |
18 | GAVAZZI Francesco | 65 |
19 | LOVASSY Krisztián | 71 |
20 | DERUETTE Thomas | 70 |
21 | PALUTA Michał | 65 |
22 | BISOLTI Alessandro | 58 |
24 | FETTER Erik | 70 |
26 | VELASCO Simone | 59 |
28 | MUÑOZ Daniel | 57 |
29 | SISR František | 72 |