Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Meeus
1
80 kgBauhaus
2
75 kgPaterski
3
73 kgDainese
4
70 kgBarbier
5
79 kgMareczko
6
67 kgKooij
7
72 kgGroves
8
76 kgStosz
9
70 kgTheuns
10
72 kgDupont
11
72 kgSevilla
12
64 kgPelikán
13
76 kgJones
14
82 kgBernas
15
77 kgKamp
16
74 kgLarsen
17
74 kgVan den Bossche
18
63 kgGonzález
19
68 kgBlikra
20
75 kgBanaszek
21
75 kgWarlop
22
71 kg
1
80 kgBauhaus
2
75 kgPaterski
3
73 kgDainese
4
70 kgBarbier
5
79 kgMareczko
6
67 kgKooij
7
72 kgGroves
8
76 kgStosz
9
70 kgTheuns
10
72 kgDupont
11
72 kgSevilla
12
64 kgPelikán
13
76 kgJones
14
82 kgBernas
15
77 kgKamp
16
74 kgLarsen
17
74 kgVan den Bossche
18
63 kgGonzález
19
68 kgBlikra
20
75 kgBanaszek
21
75 kgWarlop
22
71 kg
Weight (KG) →
Result →
82
63
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MEEUS Jordi | 80 |
2 | BAUHAUS Phil | 75 |
3 | PATERSKI Maciej | 73 |
4 | DAINESE Alberto | 70 |
5 | BARBIER Rudy | 79 |
6 | MARECZKO Jakub | 67 |
7 | KOOIJ Olav | 72 |
8 | GROVES Kaden | 76 |
9 | STOSZ Patryk | 70 |
10 | THEUNS Edward | 72 |
11 | DUPONT Timothy | 72 |
12 | SEVILLA Diego Pablo | 64 |
13 | PELIKÁN János | 76 |
14 | JONES Taj | 82 |
15 | BERNAS Paweł | 77 |
16 | KAMP Alexander | 74 |
17 | LARSEN Niklas | 74 |
18 | VAN DEN BOSSCHE Fabio | 63 |
19 | GONZÁLEZ David | 68 |
20 | BLIKRA Erlend | 75 |
21 | BANASZEK Alan | 75 |
22 | WARLOP Jordi | 71 |