Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Schönberger
1
64 kgLampaert
3
75 kgDe Buyst
4
72 kgDe Bondt
5
73 kgHirschi
6
61 kgVoisard
7
56 kgDrizners
8
70 kgMartin
9
68 kgŠtoček
10
80 kgTulett
11
56 kgMoniquet
12
61 kgNys
13
64 kgTurek
14
72 kgOnley
16
62 kgNarváez
17
65 kgFisher-Black
18
69 kgVanhoof
19
75 kgFabbro
21
52 kgDillier
22
75 kgVink
23
73 kgAberasturi
24
69 kgScott
25
80 kgDima
26
73 kg
1
64 kgLampaert
3
75 kgDe Buyst
4
72 kgDe Bondt
5
73 kgHirschi
6
61 kgVoisard
7
56 kgDrizners
8
70 kgMartin
9
68 kgŠtoček
10
80 kgTulett
11
56 kgMoniquet
12
61 kgNys
13
64 kgTurek
14
72 kgOnley
16
62 kgNarváez
17
65 kgFisher-Black
18
69 kgVanhoof
19
75 kgFabbro
21
52 kgDillier
22
75 kgVink
23
73 kgAberasturi
24
69 kgScott
25
80 kgDima
26
73 kg
Weight (KG) →
Result →
80
52
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | SCHÖNBERGER Sebastian | 64 |
3 | LAMPAERT Yves | 75 |
4 | DE BUYST Jasper | 72 |
5 | DE BONDT Dries | 73 |
6 | HIRSCHI Marc | 61 |
7 | VOISARD Yannis | 56 |
8 | DRIZNERS Jarrad | 70 |
9 | MARTIN David | 68 |
10 | ŠTOČEK Matúš | 80 |
11 | TULETT Ben | 56 |
12 | MONIQUET Sylvain | 61 |
13 | NYS Thibau | 64 |
14 | TUREK Daniel | 72 |
16 | ONLEY Oscar | 62 |
17 | NARVÁEZ Jhonatan | 65 |
18 | FISHER-BLACK Finn | 69 |
19 | VANHOOF Ward | 75 |
21 | FABBRO Matteo | 52 |
22 | DILLIER Silvan | 75 |
23 | VINK Michael | 73 |
24 | ABERASTURI Jon | 69 |
25 | SCOTT Cameron | 80 |
26 | DIMA Emil | 73 |