Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Voltr
1
75 kgCavendish
2
70 kgWelsford
3
79 kgAberasturi
4
69 kgMareczko
6
67 kgPeñalver
7
67 kgGroenewegen
8
70 kgVacek
11
75 kgFilutás
12
68 kgMoschetti
14
73 kgViviani
15
67 kgScott
16
80 kgDeweirdt
17
69 kgHirschi
18
61 kgBagatin
20
75 kgVan de Paar
21
79 kgHodeg
22
76 kgLoockx
23
70 kgKalojíros
24
68 kgLiepiņš
25
67 kg
1
75 kgCavendish
2
70 kgWelsford
3
79 kgAberasturi
4
69 kgMareczko
6
67 kgPeñalver
7
67 kgGroenewegen
8
70 kgVacek
11
75 kgFilutás
12
68 kgMoschetti
14
73 kgViviani
15
67 kgScott
16
80 kgDeweirdt
17
69 kgHirschi
18
61 kgBagatin
20
75 kgVan de Paar
21
79 kgHodeg
22
76 kgLoockx
23
70 kgKalojíros
24
68 kgLiepiņš
25
67 kg
Weight (KG) →
Result →
80
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VOLTR Martin | 75 |
2 | CAVENDISH Mark | 70 |
3 | WELSFORD Sam | 79 |
4 | ABERASTURI Jon | 69 |
6 | MARECZKO Jakub | 67 |
7 | PEÑALVER Manuel | 67 |
8 | GROENEWEGEN Dylan | 70 |
11 | VACEK Mathias | 75 |
12 | FILUTÁS Viktor | 68 |
14 | MOSCHETTI Matteo | 73 |
15 | VIVIANI Elia | 67 |
16 | SCOTT Cameron | 80 |
17 | DEWEIRDT Siebe | 69 |
18 | HIRSCHI Marc | 61 |
20 | BAGATIN Christian | 75 |
21 | VAN DE PAAR Jarne | 79 |
22 | HODEG Álvaro José | 76 |
23 | LOOCKX Lander | 70 |
24 | KALOJÍROS Tomáš | 68 |
25 | LIEPIŅŠ Emīls | 67 |