Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Jang
2
64 kgWong
4
65 kgSeo
8
66 kgPark
10
73 kgShimizu
19
60 kgTang
25
62 kgRoe
29
66 kgBeuchat
32
62 kgFukushima
36
62 kgJanse van Rensburg
37
63 kgVenter
40
70 kgJang
41
64 kgChoe
46
63 kgFeng
48
68 kgPasseron
50
73 kgCrawford
51
59 kgKhalmuratov
55
68 kgvan Bon
66
72 kg
2
64 kgWong
4
65 kgSeo
8
66 kgPark
10
73 kgShimizu
19
60 kgTang
25
62 kgRoe
29
66 kgBeuchat
32
62 kgFukushima
36
62 kgJanse van Rensburg
37
63 kgVenter
40
70 kgJang
41
64 kgChoe
46
63 kgFeng
48
68 kgPasseron
50
73 kgCrawford
51
59 kgKhalmuratov
55
68 kgvan Bon
66
72 kg
Weight (KG) →
Result →
73
59
2
66
# | Rider | Weight (KG) |
---|---|---|
2 | JANG Chan Jae | 64 |
4 | WONG Kam-Po | 65 |
8 | SEO Joon Yong | 66 |
10 | PARK Sung Baek | 73 |
19 | SHIMIZU Miyataka | 60 |
25 | TANG Wang Yip | 62 |
29 | ROE Timothy | 66 |
32 | BEUCHAT Roger | 62 |
36 | FUKUSHIMA Shinichi | 62 |
37 | JANSE VAN RENSBURG Jacques | 63 |
40 | VENTER Jaco | 70 |
41 | JANG Kyung-Gu | 64 |
46 | CHOE Hyeong Min | 63 |
48 | FENG Chun Kai | 68 |
50 | PASSERON Aurélien | 73 |
51 | CRAWFORD Jai | 59 |
55 | KHALMURATOV Muradjan | 68 |
66 | VAN BON Léon | 72 |