Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 127
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Park
2
73 kgWestphal
3
75 kgSeo
5
66 kgTang
7
62 kgPasseron
9
73 kgJang
12
64 kgJang
17
64 kgVenter
20
70 kgFeng
23
68 kgJanse van Rensburg
31
63 kgShimizu
32
60 kgNakajima
36
64 kgBeuchat
37
62 kgWong
38
65 kgvan Bon
39
72 kgKannemeyer
43
67 kgCrawford
44
59 kgRoe
45
66 kgKhalmuratov
54
68 kgUchima
56
63 kgFukushima
58
62 kgChoe
76
63 kgFukuda
95
70 kg
2
73 kgWestphal
3
75 kgSeo
5
66 kgTang
7
62 kgPasseron
9
73 kgJang
12
64 kgJang
17
64 kgVenter
20
70 kgFeng
23
68 kgJanse van Rensburg
31
63 kgShimizu
32
60 kgNakajima
36
64 kgBeuchat
37
62 kgWong
38
65 kgvan Bon
39
72 kgKannemeyer
43
67 kgCrawford
44
59 kgRoe
45
66 kgKhalmuratov
54
68 kgUchima
56
63 kgFukushima
58
62 kgChoe
76
63 kgFukuda
95
70 kg
Weight (KG) →
Result →
75
59
2
95
# | Rider | Weight (KG) |
---|---|---|
2 | PARK Sung Baek | 73 |
3 | WESTPHAL Carlo | 75 |
5 | SEO Joon Yong | 66 |
7 | TANG Wang Yip | 62 |
9 | PASSERON Aurélien | 73 |
12 | JANG Kyung-Gu | 64 |
17 | JANG Chan Jae | 64 |
20 | VENTER Jaco | 70 |
23 | FENG Chun Kai | 68 |
31 | JANSE VAN RENSBURG Jacques | 63 |
32 | SHIMIZU Miyataka | 60 |
36 | NAKAJIMA Yasuharu | 64 |
37 | BEUCHAT Roger | 62 |
38 | WONG Kam-Po | 65 |
39 | VAN BON Léon | 72 |
43 | KANNEMEYER Tiaan | 67 |
44 | CRAWFORD Jai | 59 |
45 | ROE Timothy | 66 |
54 | KHALMURATOV Muradjan | 68 |
56 | UCHIMA Kohei | 63 |
58 | FUKUSHIMA Shinichi | 62 |
76 | CHOE Hyeong Min | 63 |
95 | FUKUDA Shinpei | 70 |