Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Roe
1
66 kgShimizu
2
60 kgBeuchat
3
62 kgPasseron
4
73 kgPark
5
73 kgFeng
10
68 kgFukushima
14
62 kgCrawford
22
59 kgVenter
23
70 kgJang
27
64 kgJanse van Rensburg
32
63 kgvan Bon
36
72 kgChoe
37
63 kgJang
43
64 kgSeo
49
66 kgTang
51
62 kgKannemeyer
53
67 kgUchima
54
63 kgWong
67
65 kgFukuda
71
70 kgWestphal
78
75 kgKhalmuratov
84
68 kgMat Amin
92
54 kg
1
66 kgShimizu
2
60 kgBeuchat
3
62 kgPasseron
4
73 kgPark
5
73 kgFeng
10
68 kgFukushima
14
62 kgCrawford
22
59 kgVenter
23
70 kgJang
27
64 kgJanse van Rensburg
32
63 kgvan Bon
36
72 kgChoe
37
63 kgJang
43
64 kgSeo
49
66 kgTang
51
62 kgKannemeyer
53
67 kgUchima
54
63 kgWong
67
65 kgFukuda
71
70 kgWestphal
78
75 kgKhalmuratov
84
68 kgMat Amin
92
54 kg
Weight (KG) →
Result →
75
54
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | ROE Timothy | 66 |
2 | SHIMIZU Miyataka | 60 |
3 | BEUCHAT Roger | 62 |
4 | PASSERON Aurélien | 73 |
5 | PARK Sung Baek | 73 |
10 | FENG Chun Kai | 68 |
14 | FUKUSHIMA Shinichi | 62 |
22 | CRAWFORD Jai | 59 |
23 | VENTER Jaco | 70 |
27 | JANG Kyung-Gu | 64 |
32 | JANSE VAN RENSBURG Jacques | 63 |
36 | VAN BON Léon | 72 |
37 | CHOE Hyeong Min | 63 |
43 | JANG Chan Jae | 64 |
49 | SEO Joon Yong | 66 |
51 | TANG Wang Yip | 62 |
53 | KANNEMEYER Tiaan | 67 |
54 | UCHIMA Kohei | 63 |
67 | WONG Kam-Po | 65 |
71 | FUKUDA Shinpei | 70 |
78 | WESTPHAL Carlo | 75 |
84 | KHALMURATOV Muradjan | 68 |
92 | MAT AMIN Mohd Shahrul | 54 |