Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Park
2
73 kgPasseron
3
73 kgVenter
5
70 kgRoe
6
66 kgBeuchat
7
62 kgCrawford
8
59 kgShimizu
9
60 kgFukushima
10
62 kgFeng
11
69 kgChoe
14
63 kgJanse van Rensburg
18
63 kgJang
26
64 kgWong
38
65 kgvan Bon
40
72 kgJang
45
64 kgTang
59
62 kgKhalmuratov
65
68 kgSeo
67
66 kg
2
73 kgPasseron
3
73 kgVenter
5
70 kgRoe
6
66 kgBeuchat
7
62 kgCrawford
8
59 kgShimizu
9
60 kgFukushima
10
62 kgFeng
11
69 kgChoe
14
63 kgJanse van Rensburg
18
63 kgJang
26
64 kgWong
38
65 kgvan Bon
40
72 kgJang
45
64 kgTang
59
62 kgKhalmuratov
65
68 kgSeo
67
66 kg
Weight (KG) →
Result →
73
59
2
67
# | Rider | Weight (KG) |
---|---|---|
2 | PARK Sung Baek | 73 |
3 | PASSERON Aurélien | 73 |
5 | VENTER Jaco | 70 |
6 | ROE Timothy | 66 |
7 | BEUCHAT Roger | 62 |
8 | CRAWFORD Jai | 59 |
9 | SHIMIZU Miyataka | 60 |
10 | FUKUSHIMA Shinichi | 62 |
11 | FENG Chun Kai | 69 |
14 | CHOE Hyeong Min | 63 |
18 | JANSE VAN RENSBURG Jacques | 63 |
26 | JANG Kyung-Gu | 64 |
38 | WONG Kam-Po | 65 |
40 | VAN BON Léon | 72 |
45 | JANG Chan Jae | 64 |
59 | TANG Wang Yip | 62 |
65 | KHALMURATOV Muradjan | 68 |
67 | SEO Joon Yong | 66 |