Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.5 * weight + 204
This means that on average for every extra kilogram weight a rider loses -2.5 positions in the result.
Friedman
2
82 kgRoutley
3
69 kgJiang
7
71 kgPark
10
73 kgJiao
14
65 kgWong
16
65 kgReijnen
18
63 kgXu
24
69 kgAlizadeh
33
62 kgShimizu
39
60 kgNishitani
41
62 kgUchima
42
63 kgBeuchat
46
62 kgFukushima
47
62 kgSeo
54
66 kgJang
55
64 kgWu
60
68 kgFeng
62
68 kgChan
73
70 kgChoe
80
63 kgCheung
97
59 kg
2
82 kgRoutley
3
69 kgJiang
7
71 kgPark
10
73 kgJiao
14
65 kgWong
16
65 kgReijnen
18
63 kgXu
24
69 kgAlizadeh
33
62 kgShimizu
39
60 kgNishitani
41
62 kgUchima
42
63 kgBeuchat
46
62 kgFukushima
47
62 kgSeo
54
66 kgJang
55
64 kgWu
60
68 kgFeng
62
68 kgChan
73
70 kgChoe
80
63 kgCheung
97
59 kg
Weight (KG) →
Result →
82
59
2
97
# | Rider | Weight (KG) |
---|---|---|
2 | FRIEDMAN Michael | 82 |
3 | ROUTLEY Will | 69 |
7 | JIANG Kun | 71 |
10 | PARK Sung Baek | 73 |
14 | JIAO Pengda | 65 |
16 | WONG Kam-Po | 65 |
18 | REIJNEN Kiel | 63 |
24 | XU Gang | 69 |
33 | ALIZADEH Hossein | 62 |
39 | SHIMIZU Miyataka | 60 |
41 | NISHITANI Taiji | 62 |
42 | UCHIMA Kohei | 63 |
46 | BEUCHAT Roger | 62 |
47 | FUKUSHIMA Shinichi | 62 |
54 | SEO Joon Yong | 66 |
55 | JANG Kyung-Gu | 64 |
60 | WU Kin San | 68 |
62 | FENG Chun Kai | 68 |
73 | CHAN Chun Hing | 70 |
80 | CHOE Hyeong Min | 63 |
97 | CHEUNG King Lok | 59 |