Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Park
2
73 kgNishitani
4
62 kgShimizu
5
60 kgWong
13
65 kgBeuchat
14
62 kgFriedman
17
82 kgJiang
25
71 kgReijnen
28
63 kgAlizadeh
38
62 kgJiao
42
65 kgCheung
44
59 kgWu
46
68 kgUchima
50
63 kgFukushima
56
62 kgJang
57
64 kgRoutley
65
69 kgSeo
66
66 kgChoe
67
63 kgXu
68
69 kgChan
75
70 kg
2
73 kgNishitani
4
62 kgShimizu
5
60 kgWong
13
65 kgBeuchat
14
62 kgFriedman
17
82 kgJiang
25
71 kgReijnen
28
63 kgAlizadeh
38
62 kgJiao
42
65 kgCheung
44
59 kgWu
46
68 kgUchima
50
63 kgFukushima
56
62 kgJang
57
64 kgRoutley
65
69 kgSeo
66
66 kgChoe
67
63 kgXu
68
69 kgChan
75
70 kg
Weight (KG) →
Result →
82
59
2
75
# | Rider | Weight (KG) |
---|---|---|
2 | PARK Sung Baek | 73 |
4 | NISHITANI Taiji | 62 |
5 | SHIMIZU Miyataka | 60 |
13 | WONG Kam-Po | 65 |
14 | BEUCHAT Roger | 62 |
17 | FRIEDMAN Michael | 82 |
25 | JIANG Kun | 71 |
28 | REIJNEN Kiel | 63 |
38 | ALIZADEH Hossein | 62 |
42 | JIAO Pengda | 65 |
44 | CHEUNG King Lok | 59 |
46 | WU Kin San | 68 |
50 | UCHIMA Kohei | 63 |
56 | FUKUSHIMA Shinichi | 62 |
57 | JANG Kyung-Gu | 64 |
65 | ROUTLEY Will | 69 |
66 | SEO Joon Yong | 66 |
67 | CHOE Hyeong Min | 63 |
68 | XU Gang | 69 |
75 | CHAN Chun Hing | 70 |