Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 108
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Xu
2
69 kgFriedman
5
82 kgShimizu
6
60 kgNishitani
9
62 kgBeuchat
24
62 kgAlizadeh
28
62 kgPark
30
73 kgReijnen
51
63 kgWu
52
68 kgSeo
53
66 kgCheung
57
59 kgJiao
58
65 kgRoutley
63
69 kgJang
64
64 kgJiang
65
71 kgFukushima
68
62 kgUchima
71
63 kgChan
77
70 kgChoe
79
63 kgWong
84
65 kg
2
69 kgFriedman
5
82 kgShimizu
6
60 kgNishitani
9
62 kgBeuchat
24
62 kgAlizadeh
28
62 kgPark
30
73 kgReijnen
51
63 kgWu
52
68 kgSeo
53
66 kgCheung
57
59 kgJiao
58
65 kgRoutley
63
69 kgJang
64
64 kgJiang
65
71 kgFukushima
68
62 kgUchima
71
63 kgChan
77
70 kgChoe
79
63 kgWong
84
65 kg
Weight (KG) →
Result →
82
59
2
84
# | Rider | Weight (KG) |
---|---|---|
2 | XU Gang | 69 |
5 | FRIEDMAN Michael | 82 |
6 | SHIMIZU Miyataka | 60 |
9 | NISHITANI Taiji | 62 |
24 | BEUCHAT Roger | 62 |
28 | ALIZADEH Hossein | 62 |
30 | PARK Sung Baek | 73 |
51 | REIJNEN Kiel | 63 |
52 | WU Kin San | 68 |
53 | SEO Joon Yong | 66 |
57 | CHEUNG King Lok | 59 |
58 | JIAO Pengda | 65 |
63 | ROUTLEY Will | 69 |
64 | JANG Kyung-Gu | 64 |
65 | JIANG Kun | 71 |
68 | FUKUSHIMA Shinichi | 62 |
71 | UCHIMA Kohei | 63 |
77 | CHAN Chun Hing | 70 |
79 | CHOE Hyeong Min | 63 |
84 | WONG Kam-Po | 65 |