Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 101
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Jiao
2
65 kgAlizadeh
3
62 kgPark
6
73 kgFriedman
10
82 kgShimizu
12
60 kgJang
14
64 kgSeo
17
66 kgBeuchat
18
62 kgWu
32
68 kgChan
40
70 kgXu
43
69 kgRoutley
45
69 kgUchima
46
63 kgJiang
48
71 kgFukushima
52
62 kgCheung
53
59 kgNishitani
56
62 kgChoe
59
63 kgReijnen
62
63 kgWong
65
65 kg
2
65 kgAlizadeh
3
62 kgPark
6
73 kgFriedman
10
82 kgShimizu
12
60 kgJang
14
64 kgSeo
17
66 kgBeuchat
18
62 kgWu
32
68 kgChan
40
70 kgXu
43
69 kgRoutley
45
69 kgUchima
46
63 kgJiang
48
71 kgFukushima
52
62 kgCheung
53
59 kgNishitani
56
62 kgChoe
59
63 kgReijnen
62
63 kgWong
65
65 kg
Weight (KG) →
Result →
82
59
2
65
# | Rider | Weight (KG) |
---|---|---|
2 | JIAO Pengda | 65 |
3 | ALIZADEH Hossein | 62 |
6 | PARK Sung Baek | 73 |
10 | FRIEDMAN Michael | 82 |
12 | SHIMIZU Miyataka | 60 |
14 | JANG Kyung-Gu | 64 |
17 | SEO Joon Yong | 66 |
18 | BEUCHAT Roger | 62 |
32 | WU Kin San | 68 |
40 | CHAN Chun Hing | 70 |
43 | XU Gang | 69 |
45 | ROUTLEY Will | 69 |
46 | UCHIMA Kohei | 63 |
48 | JIANG Kun | 71 |
52 | FUKUSHIMA Shinichi | 62 |
53 | CHEUNG King Lok | 59 |
56 | NISHITANI Taiji | 62 |
59 | CHOE Hyeong Min | 63 |
62 | REIJNEN Kiel | 63 |
65 | WONG Kam-Po | 65 |