Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Jang
1
64 kgFriedman
3
82 kgJiang
8
71 kgNishitani
10
62 kgBeuchat
11
62 kgCheung
12
59 kgReijnen
14
63 kgRoutley
16
69 kgWong
17
65 kgAlizadeh
23
62 kgJiao
28
65 kgSeo
33
66 kgPark
43
73 kgUchima
45
63 kgShimizu
47
60 kgWu
50
68 kgChoe
58
63 kgXu
68
69 kgFukushima
74
62 kgChan
77
70 kg
1
64 kgFriedman
3
82 kgJiang
8
71 kgNishitani
10
62 kgBeuchat
11
62 kgCheung
12
59 kgReijnen
14
63 kgRoutley
16
69 kgWong
17
65 kgAlizadeh
23
62 kgJiao
28
65 kgSeo
33
66 kgPark
43
73 kgUchima
45
63 kgShimizu
47
60 kgWu
50
68 kgChoe
58
63 kgXu
68
69 kgFukushima
74
62 kgChan
77
70 kg
Weight (KG) →
Result →
82
59
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | JANG Kyung-Gu | 64 |
3 | FRIEDMAN Michael | 82 |
8 | JIANG Kun | 71 |
10 | NISHITANI Taiji | 62 |
11 | BEUCHAT Roger | 62 |
12 | CHEUNG King Lok | 59 |
14 | REIJNEN Kiel | 63 |
16 | ROUTLEY Will | 69 |
17 | WONG Kam-Po | 65 |
23 | ALIZADEH Hossein | 62 |
28 | JIAO Pengda | 65 |
33 | SEO Joon Yong | 66 |
43 | PARK Sung Baek | 73 |
45 | UCHIMA Kohei | 63 |
47 | SHIMIZU Miyataka | 60 |
50 | WU Kin San | 68 |
58 | CHOE Hyeong Min | 63 |
68 | XU Gang | 69 |
74 | FUKUSHIMA Shinichi | 62 |
77 | CHAN Chun Hing | 70 |