Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Park
2
73 kgNishitani
5
62 kgSeo
6
66 kgShimizu
8
60 kgAlizadeh
10
62 kgBeuchat
12
62 kgChoe
15
63 kgJang
16
64 kgFriedman
19
82 kgJiao
21
65 kgReijnen
23
63 kgRoutley
28
69 kgJiang
29
71 kgWong
30
65 kgFukushima
32
62 kgChan
48
70 kgUchima
50
63 kgCheung
54
59 kgXu
64
69 kgWu
71
68 kg
2
73 kgNishitani
5
62 kgSeo
6
66 kgShimizu
8
60 kgAlizadeh
10
62 kgBeuchat
12
62 kgChoe
15
63 kgJang
16
64 kgFriedman
19
82 kgJiao
21
65 kgReijnen
23
63 kgRoutley
28
69 kgJiang
29
71 kgWong
30
65 kgFukushima
32
62 kgChan
48
70 kgUchima
50
63 kgCheung
54
59 kgXu
64
69 kgWu
71
68 kg
Weight (KG) →
Result →
82
59
2
71
# | Rider | Weight (KG) |
---|---|---|
2 | PARK Sung Baek | 73 |
5 | NISHITANI Taiji | 62 |
6 | SEO Joon Yong | 66 |
8 | SHIMIZU Miyataka | 60 |
10 | ALIZADEH Hossein | 62 |
12 | BEUCHAT Roger | 62 |
15 | CHOE Hyeong Min | 63 |
16 | JANG Kyung-Gu | 64 |
19 | FRIEDMAN Michael | 82 |
21 | JIAO Pengda | 65 |
23 | REIJNEN Kiel | 63 |
28 | ROUTLEY Will | 69 |
29 | JIANG Kun | 71 |
30 | WONG Kam-Po | 65 |
32 | FUKUSHIMA Shinichi | 62 |
48 | CHAN Chun Hing | 70 |
50 | UCHIMA Kohei | 63 |
54 | CHEUNG King Lok | 59 |
64 | XU Gang | 69 |
71 | WU Kin San | 68 |