Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Choi
1
59 kgEibegger
2
68 kgMizbani
5
67 kgPasseron
6
73 kgBeuchat
7
62 kgTennant
9
82 kgFukushima
11
62 kgPark
12
73 kgKhalmuratov
14
68 kgNishitani
17
62 kgJiao
18
65 kgJang
21
64 kgGruzdev
22
78 kgChoe
26
63 kgBazzana
27
63.5 kgXu
33
69 kgWong
34
65 kgSeo
39
66 kgChan
49
70 kgClancy
50
79 kgCheung
53
59 kgHanson
54
74 kgNakajima
55
64 kg
1
59 kgEibegger
2
68 kgMizbani
5
67 kgPasseron
6
73 kgBeuchat
7
62 kgTennant
9
82 kgFukushima
11
62 kgPark
12
73 kgKhalmuratov
14
68 kgNishitani
17
62 kgJiao
18
65 kgJang
21
64 kgGruzdev
22
78 kgChoe
26
63 kgBazzana
27
63.5 kgXu
33
69 kgWong
34
65 kgSeo
39
66 kgChan
49
70 kgClancy
50
79 kgCheung
53
59 kgHanson
54
74 kgNakajima
55
64 kg
Weight (KG) →
Result →
82
59
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | CHOI Ki Ho | 59 |
2 | EIBEGGER Markus | 68 |
5 | MIZBANI Ghader | 67 |
6 | PASSERON Aurélien | 73 |
7 | BEUCHAT Roger | 62 |
9 | TENNANT Andrew | 82 |
11 | FUKUSHIMA Shinichi | 62 |
12 | PARK Sung Baek | 73 |
14 | KHALMURATOV Muradjan | 68 |
17 | NISHITANI Taiji | 62 |
18 | JIAO Pengda | 65 |
21 | JANG Chan Jae | 64 |
22 | GRUZDEV Dmitriy | 78 |
26 | CHOE Hyeong Min | 63 |
27 | BAZZANA Alessandro | 63.5 |
33 | XU Gang | 69 |
34 | WONG Kam-Po | 65 |
39 | SEO Joon Yong | 66 |
49 | CHAN Chun Hing | 70 |
50 | CLANCY Edward | 79 |
53 | CHEUNG King Lok | 59 |
54 | HANSON Ken | 74 |
55 | NAKAJIMA Yasuharu | 64 |