Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Mizbani
2
67 kgPasseron
3
73 kgChoi
5
59 kgTennant
6
82 kgFukushima
8
62 kgBeuchat
9
62 kgPark
10
73 kgJiao
11
65 kgEibegger
15
68 kgBazzana
17
63.5 kgKhalmuratov
18
68 kgNishitani
19
62 kgJang
23
64 kgHanson
24
74 kgGruzdev
26
78 kgNakajima
27
64 kgSeo
35
66 kgChan
37
70 kgChoe
39
63 kgClancy
46
79 kgKirsipuu
54
80 kgWong
58
65 kgCheung
59
59 kgXu
60
69 kg
2
67 kgPasseron
3
73 kgChoi
5
59 kgTennant
6
82 kgFukushima
8
62 kgBeuchat
9
62 kgPark
10
73 kgJiao
11
65 kgEibegger
15
68 kgBazzana
17
63.5 kgKhalmuratov
18
68 kgNishitani
19
62 kgJang
23
64 kgHanson
24
74 kgGruzdev
26
78 kgNakajima
27
64 kgSeo
35
66 kgChan
37
70 kgChoe
39
63 kgClancy
46
79 kgKirsipuu
54
80 kgWong
58
65 kgCheung
59
59 kgXu
60
69 kg
Weight (KG) →
Result →
82
59
2
60
# | Rider | Weight (KG) |
---|---|---|
2 | MIZBANI Ghader | 67 |
3 | PASSERON Aurélien | 73 |
5 | CHOI Ki Ho | 59 |
6 | TENNANT Andrew | 82 |
8 | FUKUSHIMA Shinichi | 62 |
9 | BEUCHAT Roger | 62 |
10 | PARK Sung Baek | 73 |
11 | JIAO Pengda | 65 |
15 | EIBEGGER Markus | 68 |
17 | BAZZANA Alessandro | 63.5 |
18 | KHALMURATOV Muradjan | 68 |
19 | NISHITANI Taiji | 62 |
23 | JANG Chan Jae | 64 |
24 | HANSON Ken | 74 |
26 | GRUZDEV Dmitriy | 78 |
27 | NAKAJIMA Yasuharu | 64 |
35 | SEO Joon Yong | 66 |
37 | CHAN Chun Hing | 70 |
39 | CHOE Hyeong Min | 63 |
46 | CLANCY Edward | 79 |
54 | KIRSIPUU Jaan | 80 |
58 | WONG Kam-Po | 65 |
59 | CHEUNG King Lok | 59 |
60 | XU Gang | 69 |