Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 129
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Hanson
1
74 kgClancy
2
79 kgBazzana
3
63.5 kgPark
4
73 kgTennant
5
82 kgJang
6
64 kgBeuchat
8
62 kgPasseron
10
73 kgSeo
11
66 kgGruzdev
16
78 kgNishitani
18
62 kgEibegger
22
68 kgMizbani
29
67 kgFukushima
36
62 kgChoi
37
59 kgWong
40
65 kgJiao
48
65 kgNakajima
50
64 kgChoe
51
63 kgXu
54
69 kgCheung
61
59 kgKhalmuratov
62
68 kgChan
66
70 kg
1
74 kgClancy
2
79 kgBazzana
3
63.5 kgPark
4
73 kgTennant
5
82 kgJang
6
64 kgBeuchat
8
62 kgPasseron
10
73 kgSeo
11
66 kgGruzdev
16
78 kgNishitani
18
62 kgEibegger
22
68 kgMizbani
29
67 kgFukushima
36
62 kgChoi
37
59 kgWong
40
65 kgJiao
48
65 kgNakajima
50
64 kgChoe
51
63 kgXu
54
69 kgCheung
61
59 kgKhalmuratov
62
68 kgChan
66
70 kg
Weight (KG) →
Result →
82
59
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | HANSON Ken | 74 |
2 | CLANCY Edward | 79 |
3 | BAZZANA Alessandro | 63.5 |
4 | PARK Sung Baek | 73 |
5 | TENNANT Andrew | 82 |
6 | JANG Chan Jae | 64 |
8 | BEUCHAT Roger | 62 |
10 | PASSERON Aurélien | 73 |
11 | SEO Joon Yong | 66 |
16 | GRUZDEV Dmitriy | 78 |
18 | NISHITANI Taiji | 62 |
22 | EIBEGGER Markus | 68 |
29 | MIZBANI Ghader | 67 |
36 | FUKUSHIMA Shinichi | 62 |
37 | CHOI Ki Ho | 59 |
40 | WONG Kam-Po | 65 |
48 | JIAO Pengda | 65 |
50 | NAKAJIMA Yasuharu | 64 |
51 | CHOE Hyeong Min | 63 |
54 | XU Gang | 69 |
61 | CHEUNG King Lok | 59 |
62 | KHALMURATOV Muradjan | 68 |
66 | CHAN Chun Hing | 70 |