Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sbaragli 
1
74 kgBole
3
69 kgJang
4
64 kgJang
5
64 kgOroz
6
71 kgPark
7
73 kgBenfatto
13
71 kgCarthy
14
69 kgPrades
15
56 kgPorter
18
73 kgMalaguti
21
67 kgBaliani
23
66 kgSeo
26
66 kgAnderson
27
68 kgGoesinnen
28
75 kgNorris
30
67 kgPeron
32
70 kgLapthorne
37
70 kgHaig
38
67 kgChoe
39
63 kg
1
74 kgBole
3
69 kgJang
4
64 kgJang
5
64 kgOroz
6
71 kgPark
7
73 kgBenfatto
13
71 kgCarthy
14
69 kgPrades
15
56 kgPorter
18
73 kgMalaguti
21
67 kgBaliani
23
66 kgSeo
26
66 kgAnderson
27
68 kgGoesinnen
28
75 kgNorris
30
67 kgPeron
32
70 kgLapthorne
37
70 kgHaig
38
67 kgChoe
39
63 kg
Weight (KG) → 
Result → 
75
56
1
39
| # | Rider | Weight (KG) | 
|---|---|---|
| 1 | SBARAGLI Kristian | 74 | 
| 3 | BOLE Grega | 69 | 
| 4 | JANG Chan Jae | 64 | 
| 5 | JANG Kyung-Gu | 64 | 
| 6 | OROZ Juan José | 71 | 
| 7 | PARK Sung Baek | 73 | 
| 13 | BENFATTO Marco | 71 | 
| 14 | CARTHY Hugh | 69 | 
| 15 | PRADES Benjamín | 56 | 
| 18 | PORTER Elliott | 73 | 
| 21 | MALAGUTI Alessandro | 67 | 
| 23 | BALIANI Fortunato | 66 | 
| 26 | SEO Joon Yong | 66 | 
| 27 | ANDERSON Jack | 68 | 
| 28 | GOESINNEN Floris | 75 | 
| 30 | NORRIS Lachlan | 67 | 
| 32 | PERON Andrea | 70 | 
| 37 | LAPTHORNE Darren | 70 | 
| 38 | HAIG Jack | 67 | 
| 39 | CHOE Hyeong Min | 63 |