Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Sbaragli
1
74 kgBole
2
69 kgJang
4
64 kgPark
5
73 kgJang
6
64 kgOroz
7
71 kgBenfatto
9
71 kgGoesinnen
11
75 kgCarthy
19
69 kgPrades
20
56 kgVan Zyl
21
72 kgPorter
24
73 kgKoishi
26
62 kgMalaguti
28
67 kgBaliani
29
66 kgSeo
32
66 kgAnderson
33
68 kgNorris
35
67 kgPeron
38
70 kgLapthorne
41
70 kgHaig
42
67 kgChoe
43
63 kg
1
74 kgBole
2
69 kgJang
4
64 kgPark
5
73 kgJang
6
64 kgOroz
7
71 kgBenfatto
9
71 kgGoesinnen
11
75 kgCarthy
19
69 kgPrades
20
56 kgVan Zyl
21
72 kgPorter
24
73 kgKoishi
26
62 kgMalaguti
28
67 kgBaliani
29
66 kgSeo
32
66 kgAnderson
33
68 kgNorris
35
67 kgPeron
38
70 kgLapthorne
41
70 kgHaig
42
67 kgChoe
43
63 kg
Weight (KG) →
Result →
75
56
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | SBARAGLI Kristian | 74 |
2 | BOLE Grega | 69 |
4 | JANG Chan Jae | 64 |
5 | PARK Sung Baek | 73 |
6 | JANG Kyung-Gu | 64 |
7 | OROZ Juan José | 71 |
9 | BENFATTO Marco | 71 |
11 | GOESINNEN Floris | 75 |
19 | CARTHY Hugh | 69 |
20 | PRADES Benjamín | 56 |
21 | VAN ZYL Johann | 72 |
24 | PORTER Elliott | 73 |
26 | KOISHI Yuma | 62 |
28 | MALAGUTI Alessandro | 67 |
29 | BALIANI Fortunato | 66 |
32 | SEO Joon Yong | 66 |
33 | ANDERSON Jack | 68 |
35 | NORRIS Lachlan | 67 |
38 | PERON Andrea | 70 |
41 | LAPTHORNE Darren | 70 |
42 | HAIG Jack | 67 |
43 | CHOE Hyeong Min | 63 |