Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Gidich
1
69 kgÁvila
2
61 kgAberasturi
4
69 kgMarini
5
72 kgGuardiola
9
65 kgLowndes
10
82 kgHatsuyama
11
59 kgLebas
12
65 kgLemus
14
61 kgSaleh
15
58 kgMonier
16
75 kgSeo
18
66 kgCecchin
19
70 kgPark
21
77 kgSaleh
22
70 kgLaverack
24
62 kgCrawford
25
59 kgJones
26
81 kgMosca
27
65 kgGiraud
28
71 kgPellaud
29
70 kgSuzuki
30
58 kg
1
69 kgÁvila
2
61 kgAberasturi
4
69 kgMarini
5
72 kgGuardiola
9
65 kgLowndes
10
82 kgHatsuyama
11
59 kgLebas
12
65 kgLemus
14
61 kgSaleh
15
58 kgMonier
16
75 kgSeo
18
66 kgCecchin
19
70 kgPark
21
77 kgSaleh
22
70 kgLaverack
24
62 kgCrawford
25
59 kgJones
26
81 kgMosca
27
65 kgGiraud
28
71 kgPellaud
29
70 kgSuzuki
30
58 kg
Weight (KG) →
Result →
82
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | GIDICH Yevgeniy | 69 |
2 | ÁVILA Edwin | 61 |
4 | ABERASTURI Jon | 69 |
5 | MARINI Nicolas | 72 |
9 | GUARDIOLA Salvador | 65 |
10 | LOWNDES Jason | 82 |
11 | HATSUYAMA Sho | 59 |
12 | LEBAS Thomas | 65 |
14 | LEMUS Luis | 61 |
15 | SALEH Mohd Zamri | 58 |
16 | MONIER Damien | 75 |
18 | SEO Joon Yong | 66 |
19 | CECCHIN Alberto | 70 |
21 | PARK Sang-Hoon | 77 |
22 | SALEH Mohd Harrif | 70 |
24 | LAVERACK Edward | 62 |
25 | CRAWFORD Jai | 59 |
26 | JONES Brenton | 81 |
27 | MOSCA Jacopo | 65 |
28 | GIRAUD Benjamin | 71 |
29 | PELLAUD Simon | 70 |
30 | SUZUKI Ryu | 58 |