Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Haedo
1
64 kgRäim
2
69 kgKreder
3
70 kgȚvetcov
4
69 kgSeo
6
66 kgPerry
7
71 kgSirironnachai
8
61 kgCima
9
70 kgChoe
10
63 kgBusato
11
67 kgOvechkin
12
61 kgPark
13
73 kgTizza
14
58 kgWilliams
16
73 kgPacioni
17
67 kgBoonratanathanakorn
19
72 kgBou
21
62 kgCrawford
23
59 kgLeung
25
73 kgCataford
26
70 kgNorris
28
67 kgKim
31
70 kgLiphongyu
32
61 kgGoldstein
35
63 kg
1
64 kgRäim
2
69 kgKreder
3
70 kgȚvetcov
4
69 kgSeo
6
66 kgPerry
7
71 kgSirironnachai
8
61 kgCima
9
70 kgChoe
10
63 kgBusato
11
67 kgOvechkin
12
61 kgPark
13
73 kgTizza
14
58 kgWilliams
16
73 kgPacioni
17
67 kgBoonratanathanakorn
19
72 kgBou
21
62 kgCrawford
23
59 kgLeung
25
73 kgCataford
26
70 kgNorris
28
67 kgKim
31
70 kgLiphongyu
32
61 kgGoldstein
35
63 kg
Weight (KG) →
Result →
73
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | HAEDO Lucas Sebastián | 64 |
2 | RÄIM Mihkel | 69 |
3 | KREDER Raymond | 70 |
4 | ȚVETCOV Serghei | 69 |
6 | SEO Joon Yong | 66 |
7 | PERRY Benjamin | 71 |
8 | SIRIRONNACHAI Sarawut | 61 |
9 | CIMA Damiano | 70 |
10 | CHOE Hyeong Min | 63 |
11 | BUSATO Matteo | 67 |
12 | OVECHKIN Artem | 61 |
13 | PARK Sung Baek | 73 |
14 | TIZZA Marco | 58 |
16 | WILLIAMS Tyler | 73 |
17 | PACIONI Luca | 67 |
19 | BOONRATANATHANAKORN Turakit | 72 |
21 | BOU Joan | 62 |
23 | CRAWFORD Jai | 59 |
25 | LEUNG Chun Wing | 73 |
26 | CATAFORD Alexander | 70 |
28 | NORRIS Lachlan | 67 |
31 | KIM Ok Cheol | 70 |
32 | LIPHONGYU Navuti | 61 |
35 | GOLDSTEIN Roy | 63 |