Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Reguigui
1
69 kgKreder
2
70 kgStrong
3
63 kgÁvila
4
61 kgLobato
5
64 kgPerry
6
71 kgLaas
7
76 kgNakane
8
55 kgSirironnachai
10
61 kgQuick
12
77 kgMinali
14
74 kgPronskiy
17
58 kgHucker
18
68 kgGuardiola
19
65 kgNikitin
20
61 kgChoe
22
63 kgFonzi
24
63 kgNakajima
25
64 kgPark
28
77 kgTakeyama
29
56 kgOram
31
68 kgPrades
32
56 kgChawchiangkwang
35
64 kg
1
69 kgKreder
2
70 kgStrong
3
63 kgÁvila
4
61 kgLobato
5
64 kgPerry
6
71 kgLaas
7
76 kgNakane
8
55 kgSirironnachai
10
61 kgQuick
12
77 kgMinali
14
74 kgPronskiy
17
58 kgHucker
18
68 kgGuardiola
19
65 kgNikitin
20
61 kgChoe
22
63 kgFonzi
24
63 kgNakajima
25
64 kgPark
28
77 kgTakeyama
29
56 kgOram
31
68 kgPrades
32
56 kgChawchiangkwang
35
64 kg
Weight (KG) →
Result →
77
55
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | REGUIGUI Youcef | 69 |
2 | KREDER Raymond | 70 |
3 | STRONG Corbin | 63 |
4 | ÁVILA Edwin | 61 |
5 | LOBATO Juan José | 64 |
6 | PERRY Benjamin | 71 |
7 | LAAS Martin | 76 |
8 | NAKANE Hideto | 55 |
10 | SIRIRONNACHAI Sarawut | 61 |
12 | QUICK Blake | 77 |
14 | MINALI Riccardo | 74 |
17 | PRONSKIY Vadim | 58 |
18 | HUCKER Robbie | 68 |
19 | GUARDIOLA Salvador | 65 |
20 | NIKITIN Matvey | 61 |
22 | CHOE Hyeong Min | 63 |
24 | FONZI Giuseppe | 63 |
25 | NAKAJIMA Yasuharu | 64 |
28 | PARK Sang-Hoon | 77 |
29 | TAKEYAMA Kosuke | 56 |
31 | ORAM James | 68 |
32 | PRADES Benjamín | 56 |
35 | CHAWCHIANGKWANG Peerapol | 64 |