Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 34
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Iglinskiy
1
68 kgSuzuki
2
60 kgSano
7
76 kgAbe
11
66 kgShushemoin
12
62 kgMizurov
13
68 kgFofonov
14
65 kgSuzuki
15
57 kgKazemi
23
71 kgNishitani
24
62 kgMukaigawa
31
64 kgTang
36
62 kgTsuji
43
62 kgHatanaka
48
72 kgKosaka
49
62 kgSohrabi
50
69 kgGruzdev
57
78 kgJang
60
64 kgUchima
68
63 kgWestphal
75
75 kg
1
68 kgSuzuki
2
60 kgSano
7
76 kgAbe
11
66 kgShushemoin
12
62 kgMizurov
13
68 kgFofonov
14
65 kgSuzuki
15
57 kgKazemi
23
71 kgNishitani
24
62 kgMukaigawa
31
64 kgTang
36
62 kgTsuji
43
62 kgHatanaka
48
72 kgKosaka
49
62 kgSohrabi
50
69 kgGruzdev
57
78 kgJang
60
64 kgUchima
68
63 kgWestphal
75
75 kg
Weight (KG) →
Result →
78
57
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | IGLINSKIY Valentin | 68 |
2 | SUZUKI Shinri | 60 |
7 | SANO Junya | 76 |
11 | ABE Takayuki | 66 |
12 | SHUSHEMOIN Alexandr | 62 |
13 | MIZUROV Andrey | 68 |
14 | FOFONOV Dmitriy | 65 |
15 | SUZUKI Yuzuru | 57 |
23 | KAZEMI Sarai Ahad | 71 |
24 | NISHITANI Taiji | 62 |
31 | MUKAIGAWA Naoki | 64 |
36 | TANG Wang Yip | 62 |
43 | TSUJI Yoshimitsu | 62 |
48 | HATANAKA Yusuke | 72 |
49 | KOSAKA Hikaru | 62 |
50 | SOHRABI Mehdi | 69 |
57 | GRUZDEV Dmitriy | 78 |
60 | JANG Chan Jae | 64 |
68 | UCHIMA Kohei | 63 |
75 | WESTPHAL Carlo | 75 |