Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Wong
1
65 kgCheung
2
59 kgTleubayev
3
70 kgTsuji
4
62 kgSuzuki
5
60 kgMiyazawa
6
61 kgKosaka
11
62 kgShushemoin
12
62 kgFukushima
13
62 kgFeng
14
68 kgMukaigawa
17
64 kgWu
20
68 kgMizurov
22
68 kgAbe
26
67 kgJiang
27
71 kgHatanaka
28
72 kgChan
29
70 kgSano
30
76 kgSuzuki
33
57 kgNakajima
34
64 kgMasuda
45
63 kgUchima
48
63 kgYamamoto
56
62 kg
1
65 kgCheung
2
59 kgTleubayev
3
70 kgTsuji
4
62 kgSuzuki
5
60 kgMiyazawa
6
61 kgKosaka
11
62 kgShushemoin
12
62 kgFukushima
13
62 kgFeng
14
68 kgMukaigawa
17
64 kgWu
20
68 kgMizurov
22
68 kgAbe
26
67 kgJiang
27
71 kgHatanaka
28
72 kgChan
29
70 kgSano
30
76 kgSuzuki
33
57 kgNakajima
34
64 kgMasuda
45
63 kgUchima
48
63 kgYamamoto
56
62 kg
Weight (KG) →
Result →
76
57
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | WONG Kam-Po | 65 |
2 | CHEUNG King Lok | 59 |
3 | TLEUBAYEV Ruslan | 70 |
4 | TSUJI Yoshimitsu | 62 |
5 | SUZUKI Shinri | 60 |
6 | MIYAZAWA Takashi | 61 |
11 | KOSAKA Hikaru | 62 |
12 | SHUSHEMOIN Alexandr | 62 |
13 | FUKUSHIMA Shinichi | 62 |
14 | FENG Chun Kai | 68 |
17 | MUKAIGAWA Naoki | 64 |
20 | WU Kin San | 68 |
22 | MIZUROV Andrey | 68 |
26 | ABE Yoshiyuki | 67 |
27 | JIANG Kun | 71 |
28 | HATANAKA Yusuke | 72 |
29 | CHAN Chun Hing | 70 |
30 | SANO Junya | 76 |
33 | SUZUKI Yuzuru | 57 |
34 | NAKAJIMA Yasuharu | 64 |
45 | MASUDA Nariyuki | 63 |
48 | UCHIMA Kohei | 63 |
56 | YAMAMOTO Genki | 62 |