Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 151
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Richeze
1
68 kgNishitani
3
62 kgFukuda
4
70 kgTsuji
6
62 kgSuzuki
12
60 kgJang
15
64 kgFukushima
18
62 kgShimizu
19
60 kgCheung
22
59 kgSano
23
76 kgHatanaka
25
72 kgSuzuki
32
57 kgCrawford
38
59 kgSai-udomsin
39
60 kgHatsuyama
49
59 kgTokuda
55
67 kgRubiano
63
58 kgBaliani
65
66 kgKimura
70
61 kgMasuda
73
63 kgYamamoto
86
62 kgHuang
93
55 kg
1
68 kgNishitani
3
62 kgFukuda
4
70 kgTsuji
6
62 kgSuzuki
12
60 kgJang
15
64 kgFukushima
18
62 kgShimizu
19
60 kgCheung
22
59 kgSano
23
76 kgHatanaka
25
72 kgSuzuki
32
57 kgCrawford
38
59 kgSai-udomsin
39
60 kgHatsuyama
49
59 kgTokuda
55
67 kgRubiano
63
58 kgBaliani
65
66 kgKimura
70
61 kgMasuda
73
63 kgYamamoto
86
62 kgHuang
93
55 kg
Weight (KG) →
Result →
76
55
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | RICHEZE Maximiliano | 68 |
3 | NISHITANI Taiji | 62 |
4 | FUKUDA Shinpei | 70 |
6 | TSUJI Yoshimitsu | 62 |
12 | SUZUKI Shinri | 60 |
15 | JANG Chan Jae | 64 |
18 | FUKUSHIMA Shinichi | 62 |
19 | SHIMIZU Miyataka | 60 |
22 | CHEUNG King Lok | 59 |
23 | SANO Junya | 76 |
25 | HATANAKA Yusuke | 72 |
32 | SUZUKI Yuzuru | 57 |
38 | CRAWFORD Jai | 59 |
39 | SAI-UDOMSIN Phuchong | 60 |
49 | HATSUYAMA Sho | 59 |
55 | TOKUDA Tanzo | 67 |
63 | RUBIANO Miguel Angel | 58 |
65 | BALIANI Fortunato | 66 |
70 | KIMURA Keisuke | 61 |
73 | MASUDA Nariyuki | 63 |
86 | YAMAMOTO Genki | 62 |
93 | HUANG Wen Chung | 55 |