Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Fukuda
1
70 kgHatanaka
2
72 kgNishitani
3
62 kgRubiano
4
58 kgSuzuki
6
60 kgSuzuki
7
57 kgCrawford
8
59 kgCheung
9
59 kgTsuji
11
62 kgSai-udomsin
14
60 kgBaliani
21
66 kgFukushima
25
62 kgMasuda
26
63 kgSano
27
76 kgHatsuyama
29
59 kgRicheze
42
68 kgTokuda
45
67 kgKimura
46
61 kgYamamoto
52
62 kg
1
70 kgHatanaka
2
72 kgNishitani
3
62 kgRubiano
4
58 kgSuzuki
6
60 kgSuzuki
7
57 kgCrawford
8
59 kgCheung
9
59 kgTsuji
11
62 kgSai-udomsin
14
60 kgBaliani
21
66 kgFukushima
25
62 kgMasuda
26
63 kgSano
27
76 kgHatsuyama
29
59 kgRicheze
42
68 kgTokuda
45
67 kgKimura
46
61 kgYamamoto
52
62 kg
Weight (KG) →
Result →
76
57
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | FUKUDA Shinpei | 70 |
2 | HATANAKA Yusuke | 72 |
3 | NISHITANI Taiji | 62 |
4 | RUBIANO Miguel Angel | 58 |
6 | SUZUKI Shinri | 60 |
7 | SUZUKI Yuzuru | 57 |
8 | CRAWFORD Jai | 59 |
9 | CHEUNG King Lok | 59 |
11 | TSUJI Yoshimitsu | 62 |
14 | SAI-UDOMSIN Phuchong | 60 |
21 | BALIANI Fortunato | 66 |
25 | FUKUSHIMA Shinichi | 62 |
26 | MASUDA Nariyuki | 63 |
27 | SANO Junya | 76 |
29 | HATSUYAMA Sho | 59 |
42 | RICHEZE Maximiliano | 68 |
45 | TOKUDA Tanzo | 67 |
46 | KIMURA Keisuke | 61 |
52 | YAMAMOTO Genki | 62 |