Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Baliani
1
66 kgRubiano
2
58 kgRicheze
3
68 kgNishitani
4
62 kgFukushima
5
62 kgCrawford
7
59 kgMasuda
10
63 kgSano
11
76 kgSuzuki
14
57 kgYamamoto
16
62 kgSai-udomsin
30
60 kgFukuda
40
70 kgHatanaka
41
72 kgSuzuki
42
60 kgTokuda
43
67 kgCheung
48
59 kgTsuji
53
62 kgHatsuyama
61
59 kg
1
66 kgRubiano
2
58 kgRicheze
3
68 kgNishitani
4
62 kgFukushima
5
62 kgCrawford
7
59 kgMasuda
10
63 kgSano
11
76 kgSuzuki
14
57 kgYamamoto
16
62 kgSai-udomsin
30
60 kgFukuda
40
70 kgHatanaka
41
72 kgSuzuki
42
60 kgTokuda
43
67 kgCheung
48
59 kgTsuji
53
62 kgHatsuyama
61
59 kg
Weight (KG) →
Result →
76
57
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | BALIANI Fortunato | 66 |
2 | RUBIANO Miguel Angel | 58 |
3 | RICHEZE Maximiliano | 68 |
4 | NISHITANI Taiji | 62 |
5 | FUKUSHIMA Shinichi | 62 |
7 | CRAWFORD Jai | 59 |
10 | MASUDA Nariyuki | 63 |
11 | SANO Junya | 76 |
14 | SUZUKI Yuzuru | 57 |
16 | YAMAMOTO Genki | 62 |
30 | SAI-UDOMSIN Phuchong | 60 |
40 | FUKUDA Shinpei | 70 |
41 | HATANAKA Yusuke | 72 |
42 | SUZUKI Shinri | 60 |
43 | TOKUDA Tanzo | 67 |
48 | CHEUNG King Lok | 59 |
53 | TSUJI Yoshimitsu | 62 |
61 | HATSUYAMA Sho | 59 |