Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Nishitani
2
62 kgRicheze
3
68 kgAverin
6
74 kgSuzuki
8
60 kgShimizu
10
60 kgKuboki
11
68 kgWong
12
65 kgFukushima
13
62 kgCheung
14
59 kgFlakemore
15
72 kgBaliani
16
66 kgSuzuki
19
57 kgSano
20
76 kgHatsuyama
22
59 kgMukaigawa
23
64 kgLebas
24
65 kgSonnery
26
60 kgMasuda
29
63 kgIino
30
61 kgArredondo
33
58 kgEarle
35
70 kgUchima
39
63 kgFukuda
44
70 kg
2
62 kgRicheze
3
68 kgAverin
6
74 kgSuzuki
8
60 kgShimizu
10
60 kgKuboki
11
68 kgWong
12
65 kgFukushima
13
62 kgCheung
14
59 kgFlakemore
15
72 kgBaliani
16
66 kgSuzuki
19
57 kgSano
20
76 kgHatsuyama
22
59 kgMukaigawa
23
64 kgLebas
24
65 kgSonnery
26
60 kgMasuda
29
63 kgIino
30
61 kgArredondo
33
58 kgEarle
35
70 kgUchima
39
63 kgFukuda
44
70 kg
Weight (KG) →
Result →
76
57
2
44
# | Rider | Weight (KG) |
---|---|---|
2 | NISHITANI Taiji | 62 |
3 | RICHEZE Maximiliano | 68 |
6 | AVERIN Maksym | 74 |
8 | SUZUKI Shinri | 60 |
10 | SHIMIZU Miyataka | 60 |
11 | KUBOKI Kazushige | 68 |
12 | WONG Kam-Po | 65 |
13 | FUKUSHIMA Shinichi | 62 |
14 | CHEUNG King Lok | 59 |
15 | FLAKEMORE Campbell | 72 |
16 | BALIANI Fortunato | 66 |
19 | SUZUKI Yuzuru | 57 |
20 | SANO Junya | 76 |
22 | HATSUYAMA Sho | 59 |
23 | MUKAIGAWA Naoki | 64 |
24 | LEBAS Thomas | 65 |
26 | SONNERY Blaise | 60 |
29 | MASUDA Nariyuki | 63 |
30 | IINO Tomoyuki | 61 |
33 | ARREDONDO Julián David | 58 |
35 | EARLE Nathan | 70 |
39 | UCHIMA Kohei | 63 |
44 | FUKUDA Shinpei | 70 |