Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Merlo
1
63 kgPozzo
2
68 kgArredondo
4
58 kgBaliani
6
66 kgEarle
7
70 kgJang
8
64 kgToribio
9
64 kgDoi
10
58 kgLebas
11
65 kgHatanaka
12
72 kgNakajima
14
64 kgMonier
17
75 kgOjavee
18
80 kgCrawford
19
59 kgFukuda
21
70 kgIribe
23
61 kgLewis
26
65 kgDe Negri
28
61 kgSai-udomsin
30
60 kgOkubo
31
70 kgChoi
32
59 kgAbe
36
66 kg
1
63 kgPozzo
2
68 kgArredondo
4
58 kgBaliani
6
66 kgEarle
7
70 kgJang
8
64 kgToribio
9
64 kgDoi
10
58 kgLebas
11
65 kgHatanaka
12
72 kgNakajima
14
64 kgMonier
17
75 kgOjavee
18
80 kgCrawford
19
59 kgFukuda
21
70 kgIribe
23
61 kgLewis
26
65 kgDe Negri
28
61 kgSai-udomsin
30
60 kgOkubo
31
70 kgChoi
32
59 kgAbe
36
66 kg
Weight (KG) →
Result →
80
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | MERLO Michele | 63 |
2 | POZZO Mattia | 68 |
4 | ARREDONDO Julián David | 58 |
6 | BALIANI Fortunato | 66 |
7 | EARLE Nathan | 70 |
8 | JANG Chan Jae | 64 |
9 | TORIBIO José Vicente | 64 |
10 | DOI Yukihiro | 58 |
11 | LEBAS Thomas | 65 |
12 | HATANAKA Yusuke | 72 |
14 | NAKAJIMA Yasuharu | 64 |
17 | MONIER Damien | 75 |
18 | OJAVEE Mart | 80 |
19 | CRAWFORD Jai | 59 |
21 | FUKUDA Shinpei | 70 |
23 | IRIBE Shotaro | 61 |
26 | LEWIS Craig | 65 |
28 | DE NEGRI Pier Paolo | 61 |
30 | SAI-UDOMSIN Phuchong | 60 |
31 | OKUBO Jin | 70 |
32 | CHOI Ki Ho | 59 |
36 | ABE Takayuki | 66 |