Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Mancebo
1
64 kgWippert
2
75 kgClarke
3
81 kgToribio
4
64 kgHatanaka
6
72 kgHaedo
7
64 kgNakane
9
55 kgPrades
10
56 kgFukuda
11
70 kgGarcía
12
68 kgCrawford
13
59 kgChtioui
15
82 kgLebas
16
65 kgNorris
18
67 kgMasuda
21
63 kgAbe
23
66 kgMonier
24
75 kgKoishi
25
62 kgPujol
31
58 kg
1
64 kgWippert
2
75 kgClarke
3
81 kgToribio
4
64 kgHatanaka
6
72 kgHaedo
7
64 kgNakane
9
55 kgPrades
10
56 kgFukuda
11
70 kgGarcía
12
68 kgCrawford
13
59 kgChtioui
15
82 kgLebas
16
65 kgNorris
18
67 kgMasuda
21
63 kgAbe
23
66 kgMonier
24
75 kgKoishi
25
62 kgPujol
31
58 kg
Weight (KG) →
Result →
82
55
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | MANCEBO Francisco | 64 |
2 | WIPPERT Wouter | 75 |
3 | CLARKE Will | 81 |
4 | TORIBIO José Vicente | 64 |
6 | HATANAKA Yusuke | 72 |
7 | HAEDO Lucas Sebastián | 64 |
9 | NAKANE Hideto | 55 |
10 | PRADES Benjamín | 56 |
11 | FUKUDA Shinpei | 70 |
12 | GARCÍA Ricardo | 68 |
13 | CRAWFORD Jai | 59 |
15 | CHTIOUI Rafaâ | 82 |
16 | LEBAS Thomas | 65 |
18 | NORRIS Lachlan | 67 |
21 | MASUDA Nariyuki | 63 |
23 | ABE Takayuki | 66 |
24 | MONIER Damien | 75 |
25 | KOISHI Yuma | 62 |
31 | PUJOL Óscar | 58 |