Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Cavanagh
1
72 kgKuboki
2
68 kgMancebo
3
64 kgEarle
4
70 kgOda
5
68 kgOka
6
57 kgNakai
7
62 kgKadota
8
65 kgHatanaka
9
72 kgOkamoto
11
65 kgQuintero
12
67 kgYamada
13
63 kgYokoyama
14
57 kgIribe
15
61 kgMagosaki
16
62 kgKobayashi
17
64 kgOnodera
18
65 kgAbe
19
66 kgMasuda
20
63 kg
1
72 kgKuboki
2
68 kgMancebo
3
64 kgEarle
4
70 kgOda
5
68 kgOka
6
57 kgNakai
7
62 kgKadota
8
65 kgHatanaka
9
72 kgOkamoto
11
65 kgQuintero
12
67 kgYamada
13
63 kgYokoyama
14
57 kgIribe
15
61 kgMagosaki
16
62 kgKobayashi
17
64 kgOnodera
18
65 kgAbe
19
66 kgMasuda
20
63 kg
Weight (KG) →
Result →
72
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | CAVANAGH Ryan | 72 |
2 | KUBOKI Kazushige | 68 |
3 | MANCEBO Francisco | 64 |
4 | EARLE Nathan | 70 |
5 | ODA Hijiri | 68 |
6 | OKA Atsushi | 57 |
7 | NAKAI Tadaaki | 62 |
8 | KADOTA Yusuke | 65 |
9 | HATANAKA Yusuke | 72 |
11 | OKAMOTO Hayato | 65 |
12 | QUINTERO Leonel | 67 |
13 | YAMADA Takumi | 63 |
14 | YOKOYAMA Kota | 57 |
15 | IRIBE Shotaro | 61 |
16 | MAGOSAKI Daiki | 62 |
17 | KOBAYASHI Marino | 64 |
18 | ONODERA Rei | 65 |
19 | ABE Takayuki | 66 |
20 | MASUDA Nariyuki | 63 |