Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Oka
1
57 kgKudus
2
58 kgOkamoto
4
65 kgAgrotis
6
67 kgYamamoto
8
63 kgTokoi
9
58 kgCavanagh
10
72 kgGuld
12
67 kgKim
13
68 kgIshigami
14
58 kgQuintero
15
67 kgMancebo
16
64 kgKoishi
17
62 kgYamamoto
18
62 kgHeffernan
19
60 kgBudyak
20
53 kgToribio
21
64 kgArashiro
22
65 kgAso
24
67 kgTani
25
68 kgSuzuki
26
57 kg
1
57 kgKudus
2
58 kgOkamoto
4
65 kgAgrotis
6
67 kgYamamoto
8
63 kgTokoi
9
58 kgCavanagh
10
72 kgGuld
12
67 kgKim
13
68 kgIshigami
14
58 kgQuintero
15
67 kgMancebo
16
64 kgKoishi
17
62 kgYamamoto
18
62 kgHeffernan
19
60 kgBudyak
20
53 kgToribio
21
64 kgArashiro
22
65 kgAso
24
67 kgTani
25
68 kgSuzuki
26
57 kg
Weight (KG) →
Result →
72
53
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | OKA Atsushi | 57 |
2 | KUDUS Merhawi | 58 |
4 | OKAMOTO Hayato | 65 |
6 | AGROTIS Alexandros | 67 |
8 | YAMAMOTO Masaki | 63 |
9 | TOKOI Ryota | 58 |
10 | CAVANAGH Ryan | 72 |
12 | GULD Daniel | 67 |
13 | KIM Euro | 68 |
14 | ISHIGAMI Masahiro | 58 |
15 | QUINTERO Leonel | 67 |
16 | MANCEBO Francisco | 64 |
17 | KOISHI Yuma | 62 |
18 | YAMAMOTO Genki | 62 |
19 | HEFFERNAN William | 60 |
20 | BUDYAK Anatoliy | 53 |
21 | TORIBIO José Vicente | 64 |
22 | ARASHIRO Yudai | 65 |
24 | ASO Keisuke | 67 |
25 | TANI Junsei | 68 |
26 | SUZUKI Yuzuru | 57 |