Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Pawlak
1
81 kgArvanitou
3
71 kgHuitema
4
66 kgBanaszek
7
75 kgBouglas
8
71 kgKostański
9
74 kgKonings
11
69 kgPeters
13
75 kgFranz
17
60 kgSowiński
18
63 kgŁątkowski
24
68 kgBudziński
25
69 kgDoyle
29
69 kgMaślak
31
73 kgTzortzakis
34
80 kgOttema
36
77 kgClauss
40
71 kg
1
81 kgArvanitou
3
71 kgHuitema
4
66 kgBanaszek
7
75 kgBouglas
8
71 kgKostański
9
74 kgKonings
11
69 kgPeters
13
75 kgFranz
17
60 kgSowiński
18
63 kgŁątkowski
24
68 kgBudziński
25
69 kgDoyle
29
69 kgMaślak
31
73 kgTzortzakis
34
80 kgOttema
36
77 kgClauss
40
71 kg
Weight (KG) →
Result →
81
60
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | PAWLAK Tobiasz | 81 |
3 | ARVANITOU Nikiforos | 71 |
4 | HUITEMA Jasper | 66 |
7 | BANASZEK Norbert | 75 |
8 | BOUGLAS Georgios | 71 |
9 | KOSTAŃSKI Mateusz | 74 |
11 | KONINGS Roan | 69 |
13 | PETERS Marvin | 75 |
17 | FRANZ Toni | 60 |
18 | SOWIŃSKI Artur | 63 |
24 | ŁĄTKOWSKI Dawid | 68 |
25 | BUDZIŃSKI Tomasz | 69 |
29 | DOYLE Leo | 69 |
31 | MAŚLAK Piotr | 73 |
34 | TZORTZAKIS Polychronis | 80 |
36 | OTTEMA Rick | 77 |
40 | CLAUSS Marc | 71 |