Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Magosaki
1
62 kgCañaveral
3
60 kgBouhanni
9
70 kgGervais
12
72 kgGranigan
19
76 kgZahiri
21
57 kgCosta
35
61 kgMaitre
42
71 kgNorsgaard
46
88 kgLarsen
53
74 kgBarta
60
61 kgGregaard
66
66 kgGee
70
72 kgTejada
72
63 kgSchultz
75
60 kgHoover
76
78 kgTouzé
85
69 kgKoyama
106
58 kg
1
62 kgCañaveral
3
60 kgBouhanni
9
70 kgGervais
12
72 kgGranigan
19
76 kgZahiri
21
57 kgCosta
35
61 kgMaitre
42
71 kgNorsgaard
46
88 kgLarsen
53
74 kgBarta
60
61 kgGregaard
66
66 kgGee
70
72 kgTejada
72
63 kgSchultz
75
60 kgHoover
76
78 kgTouzé
85
69 kgKoyama
106
58 kg
Weight (KG) →
Result →
88
57
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | MAGOSAKI Daiki | 62 |
3 | CAÑAVERAL Johnatan | 60 |
9 | BOUHANNI Rayane | 70 |
12 | GERVAIS Laurent | 72 |
19 | GRANIGAN Noah | 76 |
21 | ZAHIRI Abderrahim | 57 |
35 | COSTA Adrien | 61 |
42 | MAITRE Florian | 71 |
46 | NORSGAARD Mathias | 88 |
53 | LARSEN Niklas | 74 |
60 | BARTA Will | 61 |
66 | GREGAARD Jonas | 66 |
70 | GEE Derek | 72 |
72 | TEJADA Harold | 63 |
75 | SCHULTZ Jesper | 60 |
76 | HOOVER Gavin | 78 |
85 | TOUZÉ Damien | 69 |
106 | KOYAMA Takahiro | 58 |